Introduction to LLM
Total of 12 articles available.
Currently on page 1 of 1.
4.2 Enhancing Customer Support with LLM-Based Question Answering Systems
Discover how Question Answering Systems powered by Large Language Models (LLMs) are transforming customer support, search engines, and specialized fields with high accuracy and flexibility.
2024-09-17
4.0 Applications of LLMs: Text Generation, Question Answering, Translation, and Code Generation
Discover how Large Language Models (LLMs) are used across various NLP tasks, including text generation, question answering, translation, and code generation. Learn about their practical applications and benefits.
2024-09-15
3.3 Fine-Tuning and Transfer Learning for LLMs: Efficient Techniques Explained
Learn how fine-tuning and transfer learning techniques can adapt pre-trained Large Language Models (LLMs) to specific tasks efficiently, saving time and resources while improving accuracy.
2024-09-14
3.0 How to Train Large Language Models (LLMs): Data Preparation, Steps, and Fine-Tuning
Learn the key techniques for training Large Language Models (LLMs), including data preprocessing, forward and backward propagation, fine-tuning, and transfer learning. Optimize your model’s performance with efficient training methods.
2024-09-11
2.2 Understanding the Attention Mechanism in Large Language Models (LLMs)
Learn about the core attention mechanism that powers Large Language Models (LLMs). Discover the concepts of self-attention, scaled dot-product attention, and multi-head attention, and how they contribute to NLP tasks.
2024-09-09
2.1 Transformer Model Explained: Core Architecture of Large Language Models (LLM)
Discover the Transformer model, the backbone of modern Large Language Models (LLM) like GPT and BERT. Learn about its efficient encoder-decoder architecture, self-attention mechanism, and how it revolutionized Natural Language Processing (NLP).
2024-09-07
2.0 The Basics of Large Language Models (LLMs): Transformer Architecture and Key Models
Learn about the foundational elements of Large Language Models (LLMs), including the transformer architecture and attention mechanism. Explore key LLMs like BERT, GPT, and T5, and their applications in NLP.
2024-09-06
1.3 Differences Between Large Language Models (LLMs) and Traditional Machine Learning
Understand the key differences between Large Language Models (LLMs) and traditional machine learning models. Explore how LLMs utilize transformer architecture, offer scalability, and leverage transfer learning for versatile NLP tasks.
2024-09-05
1.2 The Role of Large Language Models (LLMs) in Natural Language Processing (NLP)
Discover the impact of Large Language Models (LLMs) on natural language processing tasks. Learn how LLMs excel in text generation, question answering, translation, summarization, and even code generation.
2024-09-04
1.1 Understanding Large Language Models (LLMs): Definition, Training, and Scalability Explained
Explore the fundamentals of Large Language Models (LLMs), including their structure, training techniques like pre-training and fine-tuning, and the importance of scalability. Discover how LLMs like GPT and BERT work to perform NLP tasks like text generation and translation.
2024-09-03
1.0 What is an LLM? A Guide to Large Language Models in NLP
Discover the basics of Large Language Models (LLMs) in natural language processing (NLP). Learn how LLMs like GPT and BERT are trained, their roles, and how they differ from traditional machine learning models.
2024-09-02
A Guide to LLMs (Large Language Models): Understanding the Foundations of Generative AI
Learn about large language models (LLMs), including GPT, BERT, and T5, their functionality, training processes, and practical applications in NLP. This guide provides insights for engineers interested in leveraging LLMs in various fields.
2024-09-01
Category
Tags
Search History
Aufgabenverwaltung 1252
interface do usuário 1213
AI-powered solutions 1184
améliorations 1184
colaboración 1174
2FA 1173
language support 1156
búsqueda de tareas 1153
atualizações 1152
modèles de tâches 1150
ActionBridge 1131
Produktivität 1127
Aufgaben suchen 1120
interfaz de usuario 1119
joindre des fichiers 1102
Version 1.1.0 1100
anexar arquivos 1082
new features 1079
Transformer 1078
Aufgabenmanagement 1071
busca de tarefas 1065
interface utilisateur 1052
Teamaufgaben 1051
feedback automation 1047
Two-Factor Authentication 1033
modelos de tarefas 1033
CS data analysis 1013
customer data 1011
Google Maps review integration 1004
mentions feature 968
Authors
SHO
CTO of Receipt Roller Inc., he builds innovative AI solutions and writes to make large language models more understandable, sharing both practical uses and behind-the-scenes insights.