Introduction to LLM
Total of 13 articles available.
Currently on page 1 of 1.
Understanding LLMs – A Mathematical Approach to the Engine Behind AI
A preview from Chapter 7.4: Discover why large language models inherit bias, the real-world risks, strategies for mitigation, and the growing role of AI governance.
2024-11-01
5.3 Real-Time Deployment Challenges
A preview from Chapter 5.3: Explore latency, scalability, and optimization techniques for deploying large language models in real-time applications.
2024-10-01
4.3 LLMs in Translation and Summarization: Enhancing Multilingual Communication
Learn how Large Language Models (LLMs) leverage Transformer architectures for accurate translation and summarization, improving efficiency in business, media, and education.
2024-09-18
4.1 Exploring LLM Text Generation: Applications, Use Cases, and Future Trends
Learn how Large Language Models (LLMs) are applied in text generation for content creation, email drafting, creative writing, and chatbots. Discover the mechanics behind text generation and its real-world applications.
2024-09-16
4.0 Applications of LLMs: Text Generation, Question Answering, Translation, and Code Generation
Discover how Large Language Models (LLMs) are used across various NLP tasks, including text generation, question answering, translation, and code generation. Learn about their practical applications and benefits.
2024-09-15
3.1 LLM Training: Dataset Selection and Preprocessing Techniques
Learn about dataset selection and preprocessing techniques for training Large Language Models (LLMs). Explore steps like noise removal, tokenization, normalization, and data balancing for optimized model performance.
2024-09-12
2.3 Key LLM Models: BERT, GPT, and T5 Explained
Discover the main differences between BERT, GPT, and T5 in the realm of Large Language Models (LLMs). Learn about their unique features, applications, and how they contribute to various NLP tasks.
2024-09-10
2.2 Understanding the Attention Mechanism in Large Language Models (LLMs)
Learn about the core attention mechanism that powers Large Language Models (LLMs). Discover the concepts of self-attention, scaled dot-product attention, and multi-head attention, and how they contribute to NLP tasks.
2024-09-09
2.1 Transformer Model Explained: Core Architecture of Large Language Models (LLM)
Discover the Transformer model, the backbone of modern Large Language Models (LLM) like GPT and BERT. Learn about its efficient encoder-decoder architecture, self-attention mechanism, and how it revolutionized Natural Language Processing (NLP).
2024-09-07
2.0 The Basics of Large Language Models (LLMs): Transformer Architecture and Key Models
Learn about the foundational elements of Large Language Models (LLMs), including the transformer architecture and attention mechanism. Explore key LLMs like BERT, GPT, and T5, and their applications in NLP.
2024-09-06
1.3 Differences Between Large Language Models (LLMs) and Traditional Machine Learning
Understand the key differences between Large Language Models (LLMs) and traditional machine learning models. Explore how LLMs utilize transformer architecture, offer scalability, and leverage transfer learning for versatile NLP tasks.
2024-09-05
1.2 The Role of Large Language Models (LLMs) in Natural Language Processing (NLP)
Discover the impact of Large Language Models (LLMs) on natural language processing tasks. Learn how LLMs excel in text generation, question answering, translation, summarization, and even code generation.
2024-09-04
A Guide to LLMs (Large Language Models): Understanding the Foundations of Generative AI
Learn about large language models (LLMs), including GPT, BERT, and T5, their functionality, training processes, and practical applications in NLP. This guide provides insights for engineers interested in leveraging LLMs in various fields.
2024-09-01
Category
Tags
Search History
améliorations 1009
Aufgabenverwaltung 1008
interface do usuário 1004
2FA 985
colaboración 974
modèles de tâches 968
AI-powered solutions 959
language support 958
Produktivität 956
interfaz de usuario 955
atualizações 952
búsqueda de tareas 949
Aufgaben suchen 901
ActionBridge 898
joindre des fichiers 897
Version 1.1.0 879
Transformer 875
Aufgabenmanagement 874
busca de tarefas 874
new features 868
feedback automation 858
Teamaufgaben 857
anexar arquivos 854
modelos de tarefas 848
customer data 832
interface utilisateur 829
Two-Factor Authentication 821
CS data analysis 817
Google Maps review integration 817
mentions feature 779
Authors
SHO
CTO of Receipt Roller Inc., he builds innovative AI solutions and writes to make large language models more understandable, sharing both practical uses and behind-the-scenes insights.