Introduction to LLM
Total of 10 articles available.
Currently on page 1 of 1.
4.4 How LLMs Write Code: The Rise of AI-Powered Programming Assistants
Explore how large language models (LLMs) generate and complete code from natural-language prompts, and what it means for the future of software development.
2024-09-27
4.1 Exploring LLM Text Generation: Applications, Use Cases, and Future Trends
Learn how Large Language Models (LLMs) are applied in text generation for content creation, email drafting, creative writing, and chatbots. Discover the mechanics behind text generation and its real-world applications.
2024-09-16
4.0 Applications of LLMs: Text Generation, Question Answering, Translation, and Code Generation
Discover how Large Language Models (LLMs) are used across various NLP tasks, including text generation, question answering, translation, and code generation. Learn about their practical applications and benefits.
2024-09-15
3.3 Fine-Tuning and Transfer Learning for LLMs: Efficient Techniques Explained
Learn how fine-tuning and transfer learning techniques can adapt pre-trained Large Language Models (LLMs) to specific tasks efficiently, saving time and resources while improving accuracy.
2024-09-14
3.2 LLM Training Steps: Forward Propagation, Backward Propagation, and Optimization
Explore the key steps in training Large Language Models (LLMs), including initialization, forward propagation, loss calculation, backward propagation, and hyperparameter tuning. Learn how these processes help optimize model performance.
2024-09-13
3.0 How to Train Large Language Models (LLMs): Data Preparation, Steps, and Fine-Tuning
Learn the key techniques for training Large Language Models (LLMs), including data preprocessing, forward and backward propagation, fine-tuning, and transfer learning. Optimize your model’s performance with efficient training methods.
2024-09-11
2.3 Key LLM Models: BERT, GPT, and T5 Explained
Discover the main differences between BERT, GPT, and T5 in the realm of Large Language Models (LLMs). Learn about their unique features, applications, and how they contribute to various NLP tasks.
2024-09-10
1.3 Differences Between Large Language Models (LLMs) and Traditional Machine Learning
Understand the key differences between Large Language Models (LLMs) and traditional machine learning models. Explore how LLMs utilize transformer architecture, offer scalability, and leverage transfer learning for versatile NLP tasks.
2024-09-05
1.2 The Role of Large Language Models (LLMs) in Natural Language Processing (NLP)
Discover the impact of Large Language Models (LLMs) on natural language processing tasks. Learn how LLMs excel in text generation, question answering, translation, summarization, and even code generation.
2024-09-04
1.0 What is an LLM? A Guide to Large Language Models in NLP
Discover the basics of Large Language Models (LLMs) in natural language processing (NLP). Learn how LLMs like GPT and BERT are trained, their roles, and how they differ from traditional machine learning models.
2024-09-02
Category
Tags
Search History
Aufgabenverwaltung 1483
AI-powered solutions 1419
2FA 1411
interface do usuário 1405
language support 1393
améliorations 1379
ActionBridge 1376
colaboración 1376
Version 1.1.0 1353
atualizações 1345
búsqueda de tareas 1341
Aufgaben suchen 1340
interfaz de usuario 1329
modèles de tâches 1326
joindre des fichiers 1320
Produktivität 1317
new features 1307
Transformer 1306
anexar arquivos 1306
Aufgabenmanagement 1296
Teamaufgaben 1269
Two-Factor Authentication 1269
interface utilisateur 1268
busca de tarefas 1262
customer data 1252
CS data analysis 1243
feedback automation 1241
modelos de tarefas 1239
Google Maps review integration 1233
mentions feature 1156
Authors
SHO
CTO of Receipt Roller Inc., he builds innovative AI solutions and writes to make large language models more understandable, sharing both practical uses and behind-the-scenes insights.