Introduction to LLM
Total of 6 articles available.
Currently on page 1 of 1.
3.3 Fine-Tuning and Transfer Learning for LLMs: Efficient Techniques Explained
Learn how fine-tuning and transfer learning techniques can adapt pre-trained Large Language Models (LLMs) to specific tasks efficiently, saving time and resources while improving accuracy.
2024-09-14
2.3 Key LLM Models: BERT, GPT, and T5 Explained
Discover the main differences between BERT, GPT, and T5 in the realm of Large Language Models (LLMs). Learn about their unique features, applications, and how they contribute to various NLP tasks.
2024-09-10
2.2 Understanding the Attention Mechanism in Large Language Models (LLMs)
Learn about the core attention mechanism that powers Large Language Models (LLMs). Discover the concepts of self-attention, scaled dot-product attention, and multi-head attention, and how they contribute to NLP tasks.
2024-09-09
2.1 Transformer Model Explained: Core Architecture of Large Language Models (LLM)
Discover the Transformer model, the backbone of modern Large Language Models (LLM) like GPT and BERT. Learn about its efficient encoder-decoder architecture, self-attention mechanism, and how it revolutionized Natural Language Processing (NLP).
2024-09-07
2.0 The Basics of Large Language Models (LLMs): Transformer Architecture and Key Models
Learn about the foundational elements of Large Language Models (LLMs), including the transformer architecture and attention mechanism. Explore key LLMs like BERT, GPT, and T5, and their applications in NLP.
2024-09-06
1.3 Differences Between Large Language Models (LLMs) and Traditional Machine Learning
Understand the key differences between Large Language Models (LLMs) and traditional machine learning models. Explore how LLMs utilize transformer architecture, offer scalability, and leverage transfer learning for versatile NLP tasks.
2024-09-05
Category
Tags
Search History
Aufgabenverwaltung 1487
AI-powered solutions 1420
2FA 1415
interface do usuário 1406
language support 1397
améliorations 1382
colaboración 1379
ActionBridge 1377
Version 1.1.0 1354
atualizações 1347
búsqueda de tareas 1344
Aufgaben suchen 1343
interfaz de usuario 1332
modèles de tâches 1328
joindre des fichiers 1323
Produktivität 1320
new features 1312
anexar arquivos 1309
Transformer 1307
Aufgabenmanagement 1299
Teamaufgaben 1272
Two-Factor Authentication 1271
interface utilisateur 1271
busca de tarefas 1264
customer data 1254
CS data analysis 1247
feedback automation 1244
modelos de tarefas 1242
Google Maps review integration 1234
mentions feature 1158
Authors
SHO
CTO of Receipt Roller Inc., he builds innovative AI solutions and writes to make large language models more understandable, sharing both practical uses and behind-the-scenes insights.