Introduction to LLM
Total of 13 articles available.
Currently on page 1 of 1.
6.2 Simple Python Experiments with LLMs
A preview from Chapter 6.2: Learn how to run large language models with Hugging Face, OpenAI, Google Cloud, and Azure using just Python and a few lines of code.
2024-10-05
6.1 Introducing Open-Source Tools and APIs
A preview from Chapter 6.1: Explore Hugging Face, OpenAI, Google Cloud Vertex AI, and Azure Cognitive Services—leading tools to bring LLMs into your projects.
2024-10-04
6.0 Hands-On with LLMs
A preview from Chapter 6: Learn how to run large language models yourself with open-source libraries, cloud APIs, and Python—making LLMs accessible to everyone.
2024-10-02
5.3 Real-Time Deployment Challenges
A preview from Chapter 5.3: Explore latency, scalability, and optimization techniques for deploying large language models in real-time applications.
2024-10-01
5.1 Bias & Ethical Considerations
A preview from Chapter 5.1 of our book: uncover how large language models inherit bias and learn strategies to build fair, trustworthy AI.
2024-09-29
5.0 Pitfalls & Best Practices When Using LLMs
Discover the hidden risks of large language models—bias, cost, and latency—and learn best practices for deploying LLMs responsibly.
2024-09-28
4.4 How LLMs Write Code: The Rise of AI-Powered Programming Assistants
Explore how large language models (LLMs) generate and complete code from natural-language prompts, and what it means for the future of software development.
2024-09-27
4.3 LLMs in Translation and Summarization: Enhancing Multilingual Communication
Learn how Large Language Models (LLMs) leverage Transformer architectures for accurate translation and summarization, improving efficiency in business, media, and education.
2024-09-18
4.1 Exploring LLM Text Generation: Applications, Use Cases, and Future Trends
Learn how Large Language Models (LLMs) are applied in text generation for content creation, email drafting, creative writing, and chatbots. Discover the mechanics behind text generation and its real-world applications.
2024-09-16
4.0 Applications of LLMs: Text Generation, Question Answering, Translation, and Code Generation
Discover how Large Language Models (LLMs) are used across various NLP tasks, including text generation, question answering, translation, and code generation. Learn about their practical applications and benefits.
2024-09-15
3.3 Fine-Tuning and Transfer Learning for LLMs: Efficient Techniques Explained
Learn how fine-tuning and transfer learning techniques can adapt pre-trained Large Language Models (LLMs) to specific tasks efficiently, saving time and resources while improving accuracy.
2024-09-14
1.2 The Role of Large Language Models (LLMs) in Natural Language Processing (NLP)
Discover the impact of Large Language Models (LLMs) on natural language processing tasks. Learn how LLMs excel in text generation, question answering, translation, summarization, and even code generation.
2024-09-04
A Guide to LLMs (Large Language Models): Understanding the Foundations of Generative AI
Learn about large language models (LLMs), including GPT, BERT, and T5, their functionality, training processes, and practical applications in NLP. This guide provides insights for engineers interested in leveraging LLMs in various fields.
2024-09-01
Category
Tags
Search History
améliorations 1009
Aufgabenverwaltung 1008
interface do usuário 1004
2FA 984
colaboración 973
modèles de tâches 968
AI-powered solutions 958
language support 958
Produktivität 956
interfaz de usuario 955
atualizações 952
búsqueda de tareas 949
Aufgaben suchen 901
ActionBridge 898
joindre des fichiers 897
Version 1.1.0 878
Aufgabenmanagement 874
Transformer 874
busca de tarefas 873
new features 867
Teamaufgaben 857
feedback automation 857
anexar arquivos 854
modelos de tarefas 848
customer data 832
interface utilisateur 829
Two-Factor Authentication 819
Google Maps review integration 817
CS data analysis 816
mentions feature 779
Authors
SHO
CTO of Receipt Roller Inc., he builds innovative AI solutions and writes to make large language models more understandable, sharing both practical uses and behind-the-scenes insights.