Introduction to LLM
Total of 13 articles available.
Currently on page 1 of 1.
6.1 Introducing Open-Source Tools and APIs
A preview from Chapter 6.1: Explore Hugging Face, OpenAI, Google Cloud Vertex AI, and Azure Cognitive Services—leading tools to bring LLMs into your projects.
2024-10-04
6.0 Hands-On with LLMs
A preview from Chapter 6: Learn how to run large language models yourself with open-source libraries, cloud APIs, and Python—making LLMs accessible to everyone.
2024-10-02
4.4 How LLMs Write Code: The Rise of AI-Powered Programming Assistants
Explore how large language models (LLMs) generate and complete code from natural-language prompts, and what it means for the future of software development.
2024-09-27
4.0 Applications of LLMs: Text Generation, Question Answering, Translation, and Code Generation
Discover how Large Language Models (LLMs) are used across various NLP tasks, including text generation, question answering, translation, and code generation. Learn about their practical applications and benefits.
2024-09-15
3.3 Fine-Tuning and Transfer Learning for LLMs: Efficient Techniques Explained
Learn how fine-tuning and transfer learning techniques can adapt pre-trained Large Language Models (LLMs) to specific tasks efficiently, saving time and resources while improving accuracy.
2024-09-14
3.2 LLM Training Steps: Forward Propagation, Backward Propagation, and Optimization
Explore the key steps in training Large Language Models (LLMs), including initialization, forward propagation, loss calculation, backward propagation, and hyperparameter tuning. Learn how these processes help optimize model performance.
2024-09-13
3.1 LLM Training: Dataset Selection and Preprocessing Techniques
Learn about dataset selection and preprocessing techniques for training Large Language Models (LLMs). Explore steps like noise removal, tokenization, normalization, and data balancing for optimized model performance.
2024-09-12
3.0 How to Train Large Language Models (LLMs): Data Preparation, Steps, and Fine-Tuning
Learn the key techniques for training Large Language Models (LLMs), including data preprocessing, forward and backward propagation, fine-tuning, and transfer learning. Optimize your model’s performance with efficient training methods.
2024-09-11
2.3 Key LLM Models: BERT, GPT, and T5 Explained
Discover the main differences between BERT, GPT, and T5 in the realm of Large Language Models (LLMs). Learn about their unique features, applications, and how they contribute to various NLP tasks.
2024-09-10
2.0 The Basics of Large Language Models (LLMs): Transformer Architecture and Key Models
Learn about the foundational elements of Large Language Models (LLMs), including the transformer architecture and attention mechanism. Explore key LLMs like BERT, GPT, and T5, and their applications in NLP.
2024-09-06
1.3 Differences Between Large Language Models (LLMs) and Traditional Machine Learning
Understand the key differences between Large Language Models (LLMs) and traditional machine learning models. Explore how LLMs utilize transformer architecture, offer scalability, and leverage transfer learning for versatile NLP tasks.
2024-09-05
1.1 Understanding Large Language Models (LLMs): Definition, Training, and Scalability Explained
Explore the fundamentals of Large Language Models (LLMs), including their structure, training techniques like pre-training and fine-tuning, and the importance of scalability. Discover how LLMs like GPT and BERT work to perform NLP tasks like text generation and translation.
2024-09-03
A Guide to LLMs (Large Language Models): Understanding the Foundations of Generative AI
Learn about large language models (LLMs), including GPT, BERT, and T5, their functionality, training processes, and practical applications in NLP. This guide provides insights for engineers interested in leveraging LLMs in various fields.
2024-09-01
Category
Tags
Search History
Aufgabenverwaltung 1016
améliorations 1014
interface do usuário 1007
2FA 991
colaboración 979
modèles de tâches 974
Produktivität 966
interfaz de usuario 963
language support 960
AI-powered solutions 959
búsqueda de tareas 956
atualizações 955
joindre des fichiers 905
Aufgaben suchen 904
ActionBridge 901
Version 1.1.0 879
busca de tarefas 878
Aufgabenmanagement 877
Transformer 877
new features 872
anexar arquivos 865
Teamaufgaben 863
feedback automation 859
modelos de tarefas 854
interface utilisateur 837
customer data 833
Two-Factor Authentication 824
CS data analysis 823
Google Maps review integration 820
mentions feature 781
Authors
SHO
CTO of Receipt Roller Inc., he builds innovative AI solutions and writes to make large language models more understandable, sharing both practical uses and behind-the-scenes insights.