Introduction to LLM
Total of 10 articles available.
Currently on page 1 of 1.
7.4 Data Ethics and Bias in Large Language Models
A preview from Chapter 7.4: Discover why large language models inherit bias, the real-world risks, strategies for mitigation, and the growing role of AI governance.
2024-10-09
7.3 Integrating Multimodal Models
A preview from Chapter 7.3: Discover how multimodal models fuse text, images, audio, and video to unlock richer AI capabilities beyond text-only LLMs.
2024-10-09
7.2 Resource-Efficient Training
A preview from Chapter 7.2: Learn how techniques like distillation, quantization, distributed training, and data efficiency make LLMs faster, cheaper, and greener.
2024-10-08
7.1 The Evolution of Large-Scale Models
A preview from Chapter 7.1: Explore how LLMs have scaled from billions to trillions of parameters, the gains in performance, and the rising technical and ethical challenges.
2024-10-07
6.1 Introducing Open-Source Tools and APIs
A preview from Chapter 6.1: Explore Hugging Face, OpenAI, Google Cloud Vertex AI, and Azure Cognitive Services—leading tools to bring LLMs into your projects.
2024-10-04
5.3 Real-Time Deployment Challenges
A preview from Chapter 5.3: Explore latency, scalability, and optimization techniques for deploying large language models in real-time applications.
2024-10-01
5.2 Compute Resources and Cost
A preview from Chapter 5.2: Learn why LLMs demand massive compute power, what drives cost, and practical strategies to optimize performance and sustainability.
2024-09-30
5.0 Pitfalls & Best Practices When Using LLMs
Discover the hidden risks of large language models—bias, cost, and latency—and learn best practices for deploying LLMs responsibly.
2024-09-28
4.4 How LLMs Write Code: The Rise of AI-Powered Programming Assistants
Explore how large language models (LLMs) generate and complete code from natural-language prompts, and what it means for the future of software development.
2024-09-27
A Guide to LLMs (Large Language Models): Understanding the Foundations of Generative AI
Learn about large language models (LLMs), including GPT, BERT, and T5, their functionality, training processes, and practical applications in NLP. This guide provides insights for engineers interested in leveraging LLMs in various fields.
2024-09-01
Category
Tags
Search History
Aufgabenverwaltung 1030
interface do usuário 1030
améliorations 1022
2FA 994
modèles de tâches 993
Produktivität 987
búsqueda de tareas 987
colaboración 986
atualizações 973
interfaz de usuario 972
language support 968
AI-powered solutions 965
ActionBridge 922
joindre des fichiers 919
Aufgaben suchen 911
anexar arquivos 896
busca de tarefas 896
Aufgabenmanagement 889
Teamaufgaben 884
new features 884
Transformer 882
Version 1.1.0 881
feedback automation 870
interface utilisateur 869
modelos de tarefas 862
Two-Factor Authentication 846
customer data 838
CS data analysis 832
Google Maps review integration 825
mentions feature 790
Authors
SHO
CTO of Receipt Roller Inc., he builds innovative AI solutions and writes to make large language models more understandable, sharing both practical uses and behind-the-scenes insights.