Introduction to LLM
Total of 7 articles available.
Currently on page 1 of 1.
Understanding LLMs – A Mathematical Approach to the Engine Behind AI
A preview from Chapter 7.4: Discover why large language models inherit bias, the real-world risks, strategies for mitigation, and the growing role of AI governance.
2024-11-01
5.2 Compute Resources and Cost
A preview from Chapter 5.2: Learn why LLMs demand massive compute power, what drives cost, and practical strategies to optimize performance and sustainability.
2024-09-30
3.3 Fine-Tuning and Transfer Learning for LLMs: Efficient Techniques Explained
Learn how fine-tuning and transfer learning techniques can adapt pre-trained Large Language Models (LLMs) to specific tasks efficiently, saving time and resources while improving accuracy.
2024-09-14
3.2 LLM Training Steps: Forward Propagation, Backward Propagation, and Optimization
Explore the key steps in training Large Language Models (LLMs), including initialization, forward propagation, loss calculation, backward propagation, and hyperparameter tuning. Learn how these processes help optimize model performance.
2024-09-13
3.1 LLM Training: Dataset Selection and Preprocessing Techniques
Learn about dataset selection and preprocessing techniques for training Large Language Models (LLMs). Explore steps like noise removal, tokenization, normalization, and data balancing for optimized model performance.
2024-09-12
3.0 How to Train Large Language Models (LLMs): Data Preparation, Steps, and Fine-Tuning
Learn the key techniques for training Large Language Models (LLMs), including data preprocessing, forward and backward propagation, fine-tuning, and transfer learning. Optimize your model’s performance with efficient training methods.
2024-09-11
1.3 Differences Between Large Language Models (LLMs) and Traditional Machine Learning
Understand the key differences between Large Language Models (LLMs) and traditional machine learning models. Explore how LLMs utilize transformer architecture, offer scalability, and leverage transfer learning for versatile NLP tasks.
2024-09-05
Category
Tags
Search History
interface do usuário 1031
Aufgabenverwaltung 1030
améliorations 1022
2FA 995
modèles de tâches 993
Produktivität 987
búsqueda de tareas 987
colaboración 986
atualizações 973
interfaz de usuario 972
language support 969
AI-powered solutions 966
ActionBridge 923
joindre des fichiers 919
Aufgaben suchen 911
anexar arquivos 896
busca de tarefas 896
Aufgabenmanagement 889
Teamaufgaben 884
new features 884
Transformer 882
Version 1.1.0 882
feedback automation 870
interface utilisateur 870
modelos de tarefas 862
Two-Factor Authentication 847
customer data 839
CS data analysis 833
Google Maps review integration 826
mentions feature 790
Authors
SHO
CTO of Receipt Roller Inc., he builds innovative AI solutions and writes to make large language models more understandable, sharing both practical uses and behind-the-scenes insights.