Introduction to LLM
Total of 11 articles available.
Currently on page 1 of 1.
Chapter 2 — LLMs in Context: Concepts and Background
An accessible introduction to Chapter 2 of Understanding LLMs Through Math. Explore what Large Language Models are, why pretraining and parameters matter, how scaling laws shape model performance, and why Transformers revolutionized NLP. This chapter provides essential context before diving deeper into the mechanics of modern LLMs.
2025-09-07
1.3 Entropy and Information: Quantifying Uncertainty
A clear, intuitive exploration of entropy, information, and uncertainty in Large Language Models. Learn how information theory shapes next-token prediction, why entropy matters for creativity and coherence, and how cross-entropy connects probability to learning. This section concludes Chapter 1 and prepares readers for the conceptual foundations in Chapter 2.
2025-09-06
1.2 Basics of Probability for Language Generation
An intuitive, beginner-friendly guide to probability in Large Language Models. Learn how LLMs represent uncertainty, compute conditional probabilities, apply the chain rule, and generate text through sampling. This chapter builds the mathematical foundation for entropy and information theory in Section 1.3.
2025-09-05
1.1 Getting Comfortable with Mathematical Notation
A clear and accessible guide to understanding the mathematical notation used in Large Language Models. Learn how tokens, sequences, functions, and conditional probability expressions form the foundation of LLM reasoning. This chapter prepares readers for probability, entropy, and information theory in later sections.
2025-09-04
Chapter 1 — Mathematical Intuition for Language Models
An accessible introduction to Chapter 1 of Understanding LLMs Through Math. Learn how mathematical notation, probability, entropy, and information theory form the core intuition behind modern Large Language Models. This chapter builds the foundation for understanding how LLMs generate text and quantify uncertainty.
2025-09-03
Part I — Mathematical Foundations for Understanding LLMs
A clear and intuitive introduction to the mathematical foundations behind Large Language Models (LLMs). This section explains probability, entropy, embeddings, and the essential concepts that allow modern AI systems to think, reason, and generate language. Learn why mathematics is the timeless core of all LLMs and prepare for Chapter 1: Mathematical Intuition for Language Models.
2025-09-02
Understanding LLMs – A Mathematical Approach to the Engine Behind AI
A preview from Chapter 7.4: Discover why large language models inherit bias, the real-world risks, strategies for mitigation, and the growing role of AI governance.
2025-09-01
7.3 Integrating Multimodal Models
A preview from Chapter 7.3: Discover how multimodal models fuse text, images, audio, and video to unlock richer AI capabilities beyond text-only LLMs.
2024-10-09
7.0 Future Outlook and Challenges
A preview from Chapter 7: Explore the future of large language models—ethics, efficiency, multimodal AI, and responsible governance beyond scaling.
2024-10-06
4.2 Enhancing Customer Support with LLM-Based Question Answering Systems
Discover how Question Answering Systems powered by Large Language Models (LLMs) are transforming customer support, search engines, and specialized fields with high accuracy and flexibility.
2024-09-17
3.2 LLM Training Steps: Forward Propagation, Backward Propagation, and Optimization
Explore the key steps in training Large Language Models (LLMs), including initialization, forward propagation, loss calculation, backward propagation, and hyperparameter tuning. Learn how these processes help optimize model performance.
2024-09-13
Category
Tags
Search History
Aufgabenverwaltung 1267
interface do usuário 1227
AI-powered solutions 1201
améliorations 1194
colaboración 1187
2FA 1186
language support 1172
atualizações 1164
búsqueda de tareas 1163
modèles de tâches 1159
ActionBridge 1145
Produktivität 1141
Aufgaben suchen 1135
interfaz de usuario 1131
Version 1.1.0 1118
joindre des fichiers 1113
anexar arquivos 1096
new features 1093
Transformer 1090
Aufgabenmanagement 1081
busca de tarefas 1075
interface utilisateur 1070
Teamaufgaben 1065
feedback automation 1059
Two-Factor Authentication 1047
modelos de tarefas 1043
CS data analysis 1024
customer data 1024
Google Maps review integration 1019
mentions feature 978
Authors
SHO
CTO of Receipt Roller Inc., he builds innovative AI solutions and writes to make large language models more understandable, sharing both practical uses and behind-the-scenes insights.