Introduction to LLM


Total of 5 articles available. Currently on page 1 of 1.

Understanding LLMs – A Mathematical Approach to the Engine Behind AI

A preview from Chapter 7.4: Discover why large language models inherit bias, the real-world risks, strategies for mitigation, and the growing role of AI governance.
2024-11-01

7.3 Integrating Multimodal Models

A preview from Chapter 7.3: Discover how multimodal models fuse text, images, audio, and video to unlock richer AI capabilities beyond text-only LLMs.
2024-10-09

7.0 Future Outlook and Challenges

A preview from Chapter 7: Explore the future of large language models—ethics, efficiency, multimodal AI, and responsible governance beyond scaling.
2024-10-06

4.2 Enhancing Customer Support with LLM-Based Question Answering Systems

Discover how Question Answering Systems powered by Large Language Models (LLMs) are transforming customer support, search engines, and specialized fields with high accuracy and flexibility.
2024-09-17

3.2 LLM Training Steps: Forward Propagation, Backward Propagation, and Optimization

Explore the key steps in training Large Language Models (LLMs), including initialization, forward propagation, loss calculation, backward propagation, and hyperparameter tuning. Learn how these processes help optimize model performance.
2024-09-13