Introduction to LLM
Total of 6 articles available.
Currently on page 1 of 1.
2.1 What Is a Large Language Model?
A clear and in-depth explanation of what Large Language Models (LLMs) are. Learn how LLMs map token sequences to probability distributions, why next-token prediction unlocks general intelligence, and what makes a model “large.” This section builds the foundation for understanding pretraining, parameters, and scaling laws.
2025-09-08
Chapter 2 — LLMs in Context: Concepts and Background
An accessible introduction to Chapter 2 of Understanding LLMs Through Math. Explore what Large Language Models are, why pretraining and parameters matter, how scaling laws shape model performance, and why Transformers revolutionized NLP. This chapter provides essential context before diving deeper into the mechanics of modern LLMs.
2025-09-07
1.2 The Role of Large Language Models (LLMs) in Natural Language Processing (NLP)
Discover the impact of Large Language Models (LLMs) on natural language processing tasks. Learn how LLMs excel in text generation, question answering, translation, summarization, and even code generation.
2024-09-04
1.1 Understanding Large Language Models (LLMs): Definition, Training, and Scalability Explained
Explore the fundamentals of Large Language Models (LLMs), including their structure, training techniques like pre-training and fine-tuning, and the importance of scalability. Discover how LLMs like GPT and BERT work to perform NLP tasks like text generation and translation.
2024-09-03
1.0 What is an LLM? A Guide to Large Language Models in NLP
Discover the basics of Large Language Models (LLMs) in natural language processing (NLP). Learn how LLMs like GPT and BERT are trained, their roles, and how they differ from traditional machine learning models.
2024-09-02
A Guide to LLMs (Large Language Models): Understanding the Foundations of Generative AI
Learn about large language models (LLMs), including GPT, BERT, and T5, their functionality, training processes, and practical applications in NLP. This guide provides insights for engineers interested in leveraging LLMs in various fields.
2024-09-01
Category
Tags
Search History
Aufgabenverwaltung 1483
AI-powered solutions 1419
2FA 1411
interface do usuário 1405
language support 1393
améliorations 1379
ActionBridge 1376
colaboración 1376
Version 1.1.0 1353
atualizações 1345
búsqueda de tareas 1341
Aufgaben suchen 1340
interfaz de usuario 1329
modèles de tâches 1326
joindre des fichiers 1320
Produktivität 1317
new features 1308
Transformer 1306
anexar arquivos 1306
Aufgabenmanagement 1296
Teamaufgaben 1269
Two-Factor Authentication 1269
interface utilisateur 1268
busca de tarefas 1262
customer data 1252
CS data analysis 1243
feedback automation 1241
modelos de tarefas 1239
Google Maps review integration 1233
mentions feature 1156
Authors
SHO
CTO of Receipt Roller Inc., he builds innovative AI solutions and writes to make large language models more understandable, sharing both practical uses and behind-the-scenes insights.