Introduction to LLM
Total of 3 articles available.
Currently on page 1 of 1.
Chapter 1 — Mathematical Intuition for Language Models
An accessible introduction to Chapter 1 of Understanding LLMs Through Math. Learn how mathematical notation, probability, entropy, and information theory form the core intuition behind modern Large Language Models. This chapter builds the foundation for understanding how LLMs generate text and quantify uncertainty.
2025-09-03
Part I — Mathematical Foundations for Understanding LLMs
A clear and intuitive introduction to the mathematical foundations behind Large Language Models (LLMs). This section explains probability, entropy, embeddings, and the essential concepts that allow modern AI systems to think, reason, and generate language. Learn why mathematics is the timeless core of all LLMs and prepare for Chapter 1: Mathematical Intuition for Language Models.
2025-09-02
Understanding LLMs – A Mathematical Approach to the Engine Behind AI
A preview from Chapter 7.4: Discover why large language models inherit bias, the real-world risks, strategies for mitigation, and the growing role of AI governance.
2025-09-01
Category
Tags
Search History
Aufgabenverwaltung 1484
AI-powered solutions 1420
2FA 1413
interface do usuário 1405
language support 1393
améliorations 1380
colaboración 1377
ActionBridge 1376
Version 1.1.0 1353
atualizações 1346
Aufgaben suchen 1342
búsqueda de tareas 1342
interfaz de usuario 1330
modèles de tâches 1326
joindre des fichiers 1320
Produktivität 1318
new features 1308
Transformer 1306
anexar arquivos 1306
Aufgabenmanagement 1298
Teamaufgaben 1269
Two-Factor Authentication 1269
interface utilisateur 1268
busca de tarefas 1262
customer data 1252
CS data analysis 1246
feedback automation 1242
modelos de tarefas 1239
Google Maps review integration 1233
mentions feature 1157
Authors
SHO
CTO of Receipt Roller Inc., he builds innovative AI solutions and writes to make large language models more understandable, sharing both practical uses and behind-the-scenes insights.