Introduction to LLM


Total of 16 articles available. Currently on page 1 of 1.

7.4 Data Ethics and Bias in Large Language Models

A preview from Chapter 7.4: Discover why large language models inherit bias, the real-world risks, strategies for mitigation, and the growing role of AI governance.
2024-10-09

7.3 Integrating Multimodal Models

A preview from Chapter 7.3: Discover how multimodal models fuse text, images, audio, and video to unlock richer AI capabilities beyond text-only LLMs.
2024-10-09

7.2 Resource-Efficient Training

A preview from Chapter 7.2: Learn how techniques like distillation, quantization, distributed training, and data efficiency make LLMs faster, cheaper, and greener.
2024-10-08

6.2 Simple Python Experiments with LLMs

A preview from Chapter 6.2: Learn how to run large language models with Hugging Face, OpenAI, Google Cloud, and Azure using just Python and a few lines of code.
2024-10-05

6.1 Introducing Open-Source Tools and APIs

A preview from Chapter 6.1: Explore Hugging Face, OpenAI, Google Cloud Vertex AI, and Azure Cognitive Services—leading tools to bring LLMs into your projects.
2024-10-04

6.0 Hands-On with LLMs

A preview from Chapter 6: Learn how to run large language models yourself with open-source libraries, cloud APIs, and Python—making LLMs accessible to everyone.
2024-10-02

5.1 Bias & Ethical Considerations

A preview from Chapter 5.1 of our book: uncover how large language models inherit bias and learn strategies to build fair, trustworthy AI.
2024-09-29

4.4 How LLMs Write Code: The Rise of AI-Powered Programming Assistants

Explore how large language models (LLMs) generate and complete code from natural-language prompts, and what it means for the future of software development.
2024-09-27

4.3 LLMs in Translation and Summarization: Enhancing Multilingual Communication

Learn how Large Language Models (LLMs) leverage Transformer architectures for accurate translation and summarization, improving efficiency in business, media, and education.
2024-09-18

4.2 Enhancing Customer Support with LLM-Based Question Answering Systems

Discover how Question Answering Systems powered by Large Language Models (LLMs) are transforming customer support, search engines, and specialized fields with high accuracy and flexibility.
2024-09-17

4.1 Exploring LLM Text Generation: Applications, Use Cases, and Future Trends

Learn how Large Language Models (LLMs) are applied in text generation for content creation, email drafting, creative writing, and chatbots. Discover the mechanics behind text generation and its real-world applications.
2024-09-16

3.3 Fine-Tuning and Transfer Learning for LLMs: Efficient Techniques Explained

Learn how fine-tuning and transfer learning techniques can adapt pre-trained Large Language Models (LLMs) to specific tasks efficiently, saving time and resources while improving accuracy.
2024-09-14

2.3 Key LLM Models: BERT, GPT, and T5 Explained

Discover the main differences between BERT, GPT, and T5 in the realm of Large Language Models (LLMs). Learn about their unique features, applications, and how they contribute to various NLP tasks.
2024-09-10

2.1 Transformer Model Explained: Core Architecture of Large Language Models (LLM)

Discover the Transformer model, the backbone of modern Large Language Models (LLM) like GPT and BERT. Learn about its efficient encoder-decoder architecture, self-attention mechanism, and how it revolutionized Natural Language Processing (NLP).
2024-09-07

1.1 Understanding Large Language Models (LLMs): Definition, Training, and Scalability Explained

Explore the fundamentals of Large Language Models (LLMs), including their structure, training techniques like pre-training and fine-tuning, and the importance of scalability. Discover how LLMs like GPT and BERT work to perform NLP tasks like text generation and translation.
2024-09-03

A Guide to LLMs (Large Language Models): Understanding the Foundations of Generative AI

Learn about large language models (LLMs), including GPT, BERT, and T5, their functionality, training processes, and practical applications in NLP. This guide provides insights for engineers interested in leveraging LLMs in various fields.
2024-09-01