Introduction to LLM
Total of 4 articles available.
Currently on page 1 of 1.
Chapter 2 — LLMs in Context: Concepts and Background
An accessible introduction to Chapter 2 of Understanding LLMs Through Math. Explore what Large Language Models are, why pretraining and parameters matter, how scaling laws shape model performance, and why Transformers revolutionized NLP. This chapter provides essential context before diving deeper into the mechanics of modern LLMs.
2025-09-07
Part I — Mathematical Foundations for Understanding LLMs
A clear and intuitive introduction to the mathematical foundations behind Large Language Models (LLMs). This section explains probability, entropy, embeddings, and the essential concepts that allow modern AI systems to think, reason, and generate language. Learn why mathematics is the timeless core of all LLMs and prepare for Chapter 1: Mathematical Intuition for Language Models.
2025-09-02
7.3 Integrating Multimodal Models
A preview from Chapter 7.3: Discover how multimodal models fuse text, images, audio, and video to unlock richer AI capabilities beyond text-only LLMs.
2024-10-09
7.1 The Evolution of Large-Scale Models
A preview from Chapter 7.1: Explore how LLMs have scaled from billions to trillions of parameters, the gains in performance, and the rising technical and ethical challenges.
2024-10-07
Category
Tags
Search History
Aufgabenverwaltung 1489
AI-powered solutions 1423
2FA 1415
interface do usuário 1408
language support 1398
améliorations 1382
colaboración 1380
ActionBridge 1379
Version 1.1.0 1356
atualizações 1349
Aufgaben suchen 1345
búsqueda de tareas 1345
interfaz de usuario 1334
modèles de tâches 1330
joindre des fichiers 1324
Produktivität 1322
new features 1314
anexar arquivos 1311
Transformer 1308
Aufgabenmanagement 1300
Teamaufgaben 1274
Two-Factor Authentication 1272
interface utilisateur 1271
busca de tarefas 1266
customer data 1256
CS data analysis 1250
feedback automation 1245
modelos de tarefas 1244
Google Maps review integration 1237
mentions feature 1158
Authors
SHO
CTO of Receipt Roller Inc., he builds innovative AI solutions and writes to make large language models more understandable, sharing both practical uses and behind-the-scenes insights.