LLM入門
合計 5 件の記事があります。
現在 1 ページ中の 1 ページ目です。
RAGにおける幻覚とは?情報の過不足を防ぎ生成精度を高める設計法|LLM入門 7.1
RAG構成でも、LLMによる幻覚(hallucination)は発生します。本記事では、Retriever精度、プロンプト設計、出典明示などにより幻覚を抑える具体的な方法と、検知・評価の技術までを丁寧に解説します。
2025-03-04
RAGの限界と今後の展望とは?幻覚・検索精度・モデル進化にどう向き合うか|LLM入門 第7章
RAGには明確な強みがある一方で、限界や課題も存在します。本章では、幻覚対策やハイブリッド検索の可能性、大規模コンテキストモデルとの関係、そして今後の運用と設計戦略について実践的に整理します。
2025-03-03
RAGの回答精度を左右するコンテキスト整形とは?LLMへの最適な情報の渡し方|LLM入門 4.3
RAGにおいてRetrieverが抽出した情報をどのように整形し、LLMに渡すかは、出力の質に直結します。本記事では、プロンプト設計・チャンク構造・トークン最適化など、回答品質を高めるための整形技術を詳しく解説します。
2025-02-19
ChatGPTだけでは業務に使えない理由とは?|生成AIの限界とRAGの必要性|LLM入門 1.1
ChatGPTは汎用的な質問に対しては強力なツールですが、業務利用では限界があります。本記事では、固有知識の欠如、幻覚(hallucination)、情報の鮮度といった構造的課題を解説し、RAGという新たなアプローチの必要性を明らかにします。
2025-02-03
RAGで業務AIを強化する方法とは?|LLM入門:検索と統合の仕組みを解説
RAG(Retrieval-Augmented Generation)は、大規模言語モデルに社内ナレッジやFAQを統合し、業務に使えるAIを構築する鍵です。本記事ではRAGの仕組み、活用例、導入のステップまで、わかりやすく解説します。
2025-02-01
カテゴリー
検索履歴
会話履歴 5101
LLM 971
大規模言語モデル 827
言語モデル 809
生成型要約 771
GPT-2 テキスト生成 738
注意メカニズム 731
GPT テキスト生成 720
NLP トランスフォーマー 712
エンジニア向け 702
バイアス 問題 701
マルコフ連鎖 699
教育AI 699
LLM テキスト生成 692
クロスエントロピー損失 692
LLM 要約 681
データ前処理 681
トレーニング 681
バッチサイズ 678
パーソナライズドコンテンツ 673
トークン化 663
自動要約 656
数学的アプローチ 650
ロス計算 647
ミニバッチ学習 642
コード生成 631
LLM リアルタイム処理 629
セルフアテンション 628
FAQシステム 617
線形代数 617
チーム
任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。
下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。