LLM入門


合計 11 件の記事があります。 現在 1 ページ中の 1 ページ目です。

RAGの回答精度を左右するコンテキスト整形とは?LLMへの最適な情報の渡し方|LLM入門 4.3

RAGにおいてRetrieverが抽出した情報をどのように整形し、LLMに渡すかは、出力の質に直結します。本記事では、プロンプト設計・チャンク構造・トークン最適化など、回答品質を高めるための整形技術を詳しく解説します。
2025-02-19

1.2 LLM推論APIのスケーリング|水平スケーリング、ロードバランシング、キャッシュ戦略の実装

LLM推論APIのパフォーマンス向上方法を紹介します。水平スケーリング、ロードバランシング、Redisキャッシュ戦略を使用した効率的なAPI設計の実装例を解説。
2024-11-04

1.0 LLM API設計と実装ガイド | Flask & FastAPIチュートリアル

PythonフレームワークのFlaskやFastAPIを使ったLLM(大規模言語モデル)のAPI設計と実装方法を解説します。基本設計から、推論APIのスケーリング、キャッシュ戦略まで、効率的なLLM活用のための具体的な手法を紹介します。
2024-11-02

7.2 質問応答システムと機械翻訳 - LLMによる自然言語処理の応用技術

LLM(大規模言語モデル)を活用した質問応答システムと機械翻訳の技術について詳しく解説します。カスタマーサポートの自動化、国際ビジネス、観光業界などでの具体的な応用例を紹介します。
2024-10-21

6.1 データセットの前処理 - トレーニングデータのクリーニングと最適化方法

LLM(大規模言語モデル)のトレーニングに使用されるデータセットの前処理手法を解説します。データのクリーニング、トークン化、バイアス軽減、サンプリングなど、効果的な学習のためのプロセスを紹介します。
2024-10-17

4.2 マルチヘッドアテンションの数理 - トランスフォーマーモデルにおける文脈理解の強化

トランスフォーマーモデルのマルチヘッドアテンションについて詳しく解説します。各ヘッドが異なる視点から文中の単語間の関連性を捉える仕組みと、その数理的な背景について説明します。
2024-10-12

4.1 セルフアテンションメカニズム - トランスフォーマーモデルの数理的基盤

トランスフォーマーモデルのセルフアテンションメカニズムについて詳しく解説します。クエリ、キー、バリューを用いた行列演算による単語間の関連度計算と、ソフトマックス関数を使った正規化を説明します。
2024-10-11

4.0 トランスフォーマーの数理 - セルフアテンションとマルチヘッドアテンションの仕組み

トランスフォーマーモデルにおける数理的な仕組みを解説します。セルフアテンションメカニズムの行列演算や、マルチヘッドアテンションによる文脈理解の向上について詳しく説明します。
2024-10-11

3.2 線形代数とベクトル空間 - LLMにおける単語埋め込みの数理的基盤

線形代数はLLM(大規模言語モデル)の数理的基盤です。単語の埋め込みやベクトル空間内での操作、コサイン類似度を用いた単語の関係性の解析について詳しく解説します。
2024-10-10

3.1 確率論と統計 - LLMにおける言語生成と予測の基礎

確率論と統計は、LLMの言語生成や次の単語の予測において重要な役割を果たします。n-gramモデル、マルコフ連鎖、最大尤度推定(MLE)など、LLMの予測精度を向上させる数理的手法について解説します。
2024-10-09

1.2 確率論の基本と対話生成|LLMの次単語予測を学ぶ

LMは対話を“一単語ずつの確率予測”で生成します。本記事では「P(次の単語|文脈)」の考え方、自己回帰的生成、Top-kサンプリングやTemperature制御まで、確率論の基礎を対話例とともにわかりやすく解説します。
2024-10-04