LLM入門


合計 29 件の記事があります。 現在 1 ページ中の 1 ページ目です。

人格・役割・意図の設計とは?|MCP入門 7.4|AIの“存在”をプロトコルで定義する方法

AIが人格を持ち、役割を柔軟に切り替え、意図を理解して発話する時代が始まろうとしています。本記事では、MCPによってこうした構成要素をどのように設計・再現し、対話的存在としてのAIを実現できるのかを解説します。
2025-04-05

W3CのAI Context仕様とは?|MCP入門 7.3|文脈の国際標準化とMCPの役割

AIの意思決定や会話文脈を明示的に設計するため、W3CではAI Context仕様の標準化が進んでいます。本記事ではその動向と、MCPとの親和性や将来のマッピング可能性について詳しく解説します。
2025-04-04

OpenAI GPT、Claude、Geminiの文脈処理とは?|MCP入門 7.1|各社LLMの設計思想とMCPの位置づけ

各社LLMは文脈や状態の扱い方に独自のアプローチを持っています。本記事ではOpenAI GPTのSystem MessageとMemory API、Claudeの自己内省型設計、Geminiのマルチモーダル連携を比較し、MCPが果たす中立的な役割を明らかにします。
2025-04-02

MCPの未来と標準化への道とは?|MCP入門 7.0|AI文脈設計の次なるステージとグローバル接続性

Model Context Protocol(MCP)はAIの文脈理解と再現性を支える設計思想です。最終章では、各社LLMとの親和性、Memory API連携、W3C標準化、人格と役割の制御まで、MCPの未来像を展望します。
2025-04-01

システムメッセージ vs ユーザープロンプトとは?|MCP入門 6.2|LLMの人格と応答品質を分ける設計手法

プロンプトには“誰が話すか”という役割の違いがあります。本記事では、システムメッセージとユーザープロンプトの違いを明確化し、モデルの態度・目的意識・人格形成に与える影響、MCP設計への応用を詳しく解説します。
2025-03-29

“明示的な制約”と“暗黙の指示”の違いとは?|MCP入門 6.1|AIが期待に応えるためのプロンプト設計術

生成AIは指示されたことだけでなく、空気や文脈を読むことも求められます。本記事では、プロンプトにおける“明示的な制約”と“暗黙の指示”の違いを解説し、MCP設計を通じて誤解を防ぎ、意図通りの応答を得るための設計手法を紹介します。
2025-03-28

モデルの“意図解釈”と状態伝達とは?|MCP入門 6.0|プロンプトに込められた意図を理解するLLM設計

LLMが正しく応答するためには、文脈だけでなく“何を求められているか”という意図を読み取る力が不可欠です。本章では、明示的な制約・システムメッセージ・構造化文脈などを通じて、モデルがどのように内部状態を形成するかを解説します。
2025-03-27

テンプレートとスロットの設計とは?|MCP入門 3.3|生成AIの柔軟で安全な文脈構築法

生成AIの出力に一貫性と安全性を持たせるには、テンプレートとスロット設計が重要です。本章では、プロンプトテンプレート、文脈スロット化、入力サニタイズなど、再利用とセキュリティを両立する具体的なパターンを解説します。
2025-03-15

システムインストラクションの設計パターンとは?|MCP入門 3.1|生成AIの人格と振る舞いの設計

生成AIの出力に一貫性と目的を持たせるには、システムインストラクションの設計が重要です。MCPにおける役割、トーン、ルール、タスク駆動型など、代表的な設計パターンをわかりやすく解説します。
2025-03-13

MCP実装の基本設計パターンとは?|MCP入門 第3章|生成AIをプロダクトに組み込むための考え方

MCP(Model Context Protocol)をプロダクトや業務システムに実装するには、文脈・状態・履歴・ユーザー情報の扱い方を設計パターンとして整理する必要があります。本章ではMCPの構造化・再現性・スケーラビリティを支える4つの設計手法を紹介します。
2025-03-12

MCPによる状態制御と再現性の向上とは?|MCP入門 2.3|生成AIの安定設計の鍵

生成AIをプロダクトとして安定運用するには、出力の一貫性と再現性が不可欠です。MCP(Model Context Protocol)は文脈と状態を構造化し、モデルの振る舞いを制御・再現可能にします。設計原則から具体例まで詳しく解説。
2025-03-10

従来のプロンプト設計とMCPの違いとは?|MCP入門 2.2|生成AI設計の新常識

プロンプトエンジニアリングでは限界がある。MCP(Model Context Protocol)は、文脈と状態を分離・構造化することで、一貫性・拡張性・再現性を備えた生成AIの設計を可能にします。従来手法との違いを比較しながら丁寧に解説。
2025-03-09

RAG時代の設計者とは?検索と生成をつなぎ、AIを業務に根づかせる方法|LLM入門 終章

RAGの本質は、情報の選別と構造化を通じて生成AIの文脈を設計すること。本章では、生成AI時代に求められる「検索と生成をつなぐ設計者」の役割と、今後の学びと実装の地図を示します。
2025-03-08

RAGは今後も必要か?生成AI時代における検索設計の価値と使い続ける理由|LLM入門 7.4

長文処理に優れたLLMが登場する中で、RAGを使い続ける意味とは何か。本記事では、情報制御・更新性・出典明示・組織ナレッジ活用という観点から、RAGの価値と今後の活かし方を再評価します。
2025-03-07

モデルにとっての記憶とは何か?|MCP入門 1.4|生成AIと文脈再現の技術

生成AIは本当に記憶しているのか?実は、AIの“記憶”は文脈の再構築にすぎません。エフェメラルメモリ・永続メモリ・役割設計など、MCP(Model Context Protocol)での記憶制御の仕組みをわかりやすく解説します。
2025-03-06

RAGにおけるプロンプト合成の設計パターンとは?文脈統合で生成精度を高める方法|LLM入門 6.3

Retrieverで得た情報をLLMにどう渡すかが、RAGの成否を分けます。本記事では、文書構造ごとのプロンプト合成パターンとその効果、生成品質を高めるための設計指針を具体的に解説します。
2025-03-01

Azure Cognitive SearchやElasticでRAGを実現する方法|既存検索基盤を活かす構成とは|LLM入門 5.4

RAGはLangChainやLlamaIndex以外にも、Azure Cognitive SearchやElasticsearchといった既存インフラでも構築可能です。本記事では、それぞれの特徴や適用例、選定ポイントをわかりやすく整理します。
2025-02-25

OpenAI Embeddingsとベクトル検索エンジンの連携方法|RAG構築の基本|LLM入門 5.1

RAGを構築する上で基本となるのが、OpenAIの埋め込みモデルとベクトルストアの組み合わせです。本記事では、text-embedding-ada-002の特徴と、FAISSやPineconeとの連携設計、実装時の注意点を詳しく解説します。
2025-02-22

セマンティック検索とキーワード検索の違いとは?RAGの精度を左右する検索技術|LLM入門 4.4

RAGでは従来のキーワード検索ではなく、意味ベースのセマンティック検索が活用されます。本記事では、両者の違いと特性、ハイブリッド検索の活用法までを比較しながら、実務での使い分け方を丁寧に解説します。
2025-02-20

RAGに適したベクトル検索エンジンとは?FAISS・Weaviate・Pinecone徹底比較|LLM入門 4.2

RAGの検索性能を支えるのがベクトル検索エンジンです。本記事では、FAISS・Weaviate・Pineconeといった代表的エンジンの特徴を比較し、導入時に重視すべき観点や選定ポイントをわかりやすく解説します。
2025-02-18

RAGで社内ナレッジBotを構築する方法と導入効果|LLM入門 3.1

就業規則や業務手順が整備されていても、社員が情報を引き出せない現実があります。本記事では、RAGを活用して社内文書に基づくナレッジBotを構築し、社内問い合わせ削減と業務効率向上を実現した事例を紹介します。
2025-02-12

RAGとは何か?「知識の外部化」という新しいAI設計思想|LLM入門 1.3

従来のAIは知識をモデルに内在化させる方式が主流でした。しかし、変化の激しい業務環境では「知識の外部化」が重要になります。本記事では、RAGによって実現される知識とモデルの分離という設計思想の本質を解説します。
2025-02-05

なぜRAGが必要とされるのか?|業務利用で見える生成AIの限界とは|LLM入門 1.2

ChatGPTを業務に導入しようとすると、正確性・柔軟性・更新性に課題が見えてきます。本記事では、企業利用における生成AIの限界と、RAG(Retrieval-Augmented Generation)という新たなアプローチの登場背景を解説します。
2025-02-04

ChatGPTだけでは業務に使えない理由とは?|生成AIの限界とRAGの必要性|LLM入門 1.1

ChatGPTは汎用的な質問に対しては強力なツールですが、業務利用では限界があります。本記事では、固有知識の欠如、幻覚(hallucination)、情報の鮮度といった構造的課題を解説し、RAGという新たなアプローチの必要性を明らかにします。
2025-02-03

なぜ今RAGが必要なのか?|ChatGPTの限界と知識の外部化|LLM入門 第1章

ChatGPTだけでは業務に使えない──その理由は、固有情報の欠如や幻覚、情報の鮮度にあります。本章では、こうした生成AIの限界と、RAG(Retrieval-Augmented Generation)が求められる背景を丁寧に解説します。
2025-02-02

5.0 LLMを活用したチャットボット構築ガイド|Pythonでの実装例付き

LLMを活用してチャットボットを構築する方法を解説。Pythonでの実装例と、スケーラブルなデプロイ手法も紹介。
2024-11-16

4.3 LLMのモデル圧縮技術|知識蒸留、量子化、プルーニングの解説

知識蒸留、量子化、プルーニングなどのモデル圧縮技術を使い、LLMの計算コストと推論速度を改善する方法を解説します。Pythonの実装例も紹介。
2024-11-15

6.2 ミニバッチ学習と計算効率 - 大規模データセットの効率的なトレーニング手法

ミニバッチ学習は、大規模データセットを効率的にトレーニングするための手法です。計算効率の向上、学習率の調整、バッチサイズの最適化など、効率的なモデル構築を支える技術について解説します。
2024-10-18

7.5 LLMの法的規制とガバナンス:プライバシー保護と倫理対応の重要性

大規模言語モデル(LLM)の法的規制とガバナンスについて解説。プライバシー保護やデータ規制、ガバナンス体制の構築、各国の法的動向に対応したLLM運用のポイントを紹介します。
2024-10-02