LLM入門
合計 1 件の記事があります。
現在 1 ページ中の 1 ページ目です。
3.1 確率論と統計 - LLMにおける言語生成と予測の基礎
確率論と統計は、LLMの言語生成や次の単語の予測において重要な役割を果たします。n-gramモデル、マルコフ連鎖、最大尤度推定(MLE)など、LLMの予測精度を向上させる数理的手法について解説します。
2024-10-09
カテゴリー
検索履歴
会話履歴 3410
大規模言語モデル 602
言語モデル 577
生成型要約 564
エンジニア向け 553
マルコフ連鎖 543
LLM 539
LLM 要約 532
データ前処理 525
注意メカニズム 519
自動要約 518
教育AI 516
バッチサイズ 512
パーソナライズドコンテンツ 510
GPT テキスト生成 509
バイアス 問題 506
NLP トランスフォーマー 505
数学的アプローチ 504
クロスエントロピー損失 503
ミニバッチ学習 499
トークン化 496
LLM テキスト生成 493
ロス計算 476
コード生成 471
線形代数 471
トレーニング 469
LLM リアルタイム処理 467
FAQシステム 466
GPT-2 テキスト生成 465
セルフアテンション 464
チーム
任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。
下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。