LLM入門
合計 6 件の記事があります。
現在 1 ページ中の 1 ページ目です。
W3CのAI Context仕様とは?|MCP入門 7.3|文脈の国際標準化とMCPの役割
AIの意思決定や会話文脈を明示的に設計するため、W3CではAI Context仕様の標準化が進んでいます。本記事ではその動向と、MCPとの親和性や将来のマッピング可能性について詳しく解説します。
2025-04-04
ドキュメントベース質問応答(RAG)でのContext設計とは?|MCP入門 5.3|情報の構造化で精度と説明力を高める方法
RAG(検索補助生成)で生成AIが正確に応答するためには、検索結果をどのように文脈化するかが鍵です。MCP設計により、取得情報のスロット化・優先度付け・役割づけを行い、安定した回答と説明責任のある出力を実現する方法を解説します。
2025-03-25
チャットボットの履歴管理とは?|MCP入門 5.1|スコープ制御で精度とコストを最適化する設計
生成AIチャットボットの応答品質は、会話履歴の設計に大きく左右されます。本記事では、MCPを活用して履歴の粒度・要約・トピック切り替えを制御し、自然かつ効率的なチャット体験を作る方法を解説します。
2025-03-23
テンプレートとスロットの設計とは?|MCP入門 3.3|生成AIの柔軟で安全な文脈構築法
生成AIの出力に一貫性と安全性を持たせるには、テンプレートとスロット設計が重要です。本章では、プロンプトテンプレート、文脈スロット化、入力サニタイズなど、再利用とセキュリティを両立する具体的なパターンを解説します。
2025-03-15
MCP実装の基本設計パターンとは?|MCP入門 第3章|生成AIをプロダクトに組み込むための考え方
MCP(Model Context Protocol)をプロダクトや業務システムに実装するには、文脈・状態・履歴・ユーザー情報の扱い方を設計パターンとして整理する必要があります。本章ではMCPの構造化・再現性・スケーラビリティを支える4つの設計手法を紹介します。
2025-03-12
RAG設計におけるトークン制限への対処法とは?情報量と生成精度を両立する工夫|LLM入門 6.4
生成AIにはトークン数の上限という物理的な制約があります。本記事では、Retriever出力やプロンプトを設計する際に考慮すべきトークン制限と、その中で最も有効な情報を渡すための工夫と設計指針を解説します。
2025-03-02
カテゴリー
検索履歴
会話履歴 4182
LLM 731
大規模言語モデル 730
言語モデル 695
生成型要約 673
GPT-2 テキスト生成 650
注意メカニズム 642
GPT テキスト生成 636
NLP トランスフォーマー 632
エンジニア向け 620
クロスエントロピー損失 619
LLM テキスト生成 611
マルコフ連鎖 611
教育AI 609
LLM 要約 596
バッチサイズ 595
バイアス 問題 593
データ前処理 592
パーソナライズドコンテンツ 588
トレーニング 585
トークン化 577
自動要約 575
数学的アプローチ 569
ミニバッチ学習 550
セルフアテンション 546
LLM リアルタイム処理 543
コード生成 543
ロス計算 543
FAQシステム 539
線形代数 531
チーム
任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。
下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。