LLM入門
合計 5 件の記事があります。
現在 1 ページ中の 1 ページ目です。

従来のプロンプト設計とMCPの違いとは?|MCP入門 2.2|生成AI設計の新常識
プロンプトエンジニアリングでは限界がある。MCP(Model Context Protocol)は、文脈と状態を分離・構造化することで、一貫性・拡張性・再現性を備えた生成AIの設計を可能にします。従来手法との違いを比較しながら丁寧に解説。
2025-03-09

MCPとは?生成AIの文脈と状態を設計する仕組み|MCP入門 2.1
MCP(Model Context Protocol)は、生成AIが一貫した出力を生むための文脈と状態を設計・再現するためのプロトコルです。本節ではMCPの定義、プロンプトとの違い、設計思想としての役割を丁寧に解説します。
2025-03-08

Model Context Protocol(MCP)とは何か?|MCP入門 第2章|生成AIの文脈設計の新常識
MCP(Model Context Protocol)とは、生成AIにおける文脈と状態を体系的に制御・再現するための設計原則です。本章ではMCPの定義、従来のプロンプト設計との違い、状態設計による一貫性の向上、実装例などをわかりやすく解説します。
2025-03-07

プロンプトとコンテクストの違いとは?|MCP入門 1.2|生成AIにおける役割と設計の考え方
生成AIを効果的に活用するには、Prompt(命令)とContext(文脈)を分けて設計する必要があります。MCP(Model Context Protocol)の基礎として、この2つの違いと役割、実装への考え方を詳しく解説します。
2025-03-04

RAGの回答精度を左右するコンテキスト整形とは?LLMへの最適な情報の渡し方|LLM入門 4.3
RAGにおいてRetrieverが抽出した情報をどのように整形し、LLMに渡すかは、出力の質に直結します。本記事では、プロンプト設計・チャンク構造・トークン最適化など、回答品質を高めるための整形技術を詳しく解説します。
2025-02-19
カテゴリー
検索履歴
会話履歴 840
エンジニア向け 397
マルコフ連鎖 381
生成型要約 374
注意メカニズム 372
自動要約 371
教育AI 370
大規模言語モデル 369
パーソナライズドコンテンツ 367
NLP トランスフォーマー 363
言語モデル 358
トークン化 354
ミニバッチ学習 349
数学的アプローチ 347
データ前処理 338
セルフアテンション 336
GPT テキスト生成 335
クロスエントロピー損失 335
バイアス 問題 332
LLM テキスト生成 329
LLM 要約 325
ロス計算 322
バッチサイズ 319
GPT-2 テキスト生成 316
トレーニング 316
線形代数 316
FAQシステム 313
コード生成 307
自動翻訳 307
自然言語処理 翻訳 307
チーム

任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。

下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。