LLM入門
合計 5 件の記事があります。
現在 1 ページ中の 1 ページ目です。
従来のプロンプト設計とMCPの違いとは?|MCP入門 2.2|生成AI設計の新常識
プロンプトエンジニアリングでは限界がある。MCP(Model Context Protocol)は、文脈と状態を分離・構造化することで、一貫性・拡張性・再現性を備えた生成AIの設計を可能にします。従来手法との違いを比較しながら丁寧に解説。
2025-03-09
MCPとは?生成AIの文脈と状態を設計する仕組み|MCP入門 2.1
MCP(Model Context Protocol)は、生成AIが一貫した出力を生むための文脈と状態を設計・再現するためのプロトコルです。本節ではMCPの定義、プロンプトとの違い、設計思想としての役割を丁寧に解説します。
2025-03-08
Model Context Protocol(MCP)とは何か?|MCP入門 第2章|生成AIの文脈設計の新常識
MCP(Model Context Protocol)とは、生成AIにおける文脈と状態を体系的に制御・再現するための設計原則です。本章ではMCPの定義、従来のプロンプト設計との違い、状態設計による一貫性の向上、実装例などをわかりやすく解説します。
2025-03-07
プロンプトとコンテクストの違いとは?|MCP入門 1.2|生成AIにおける役割と設計の考え方
生成AIを効果的に活用するには、Prompt(命令)とContext(文脈)を分けて設計する必要があります。MCP(Model Context Protocol)の基礎として、この2つの違いと役割、実装への考え方を詳しく解説します。
2025-03-04
RAGの回答精度を左右するコンテキスト整形とは?LLMへの最適な情報の渡し方|LLM入門 4.3
RAGにおいてRetrieverが抽出した情報をどのように整形し、LLMに渡すかは、出力の質に直結します。本記事では、プロンプト設計・チャンク構造・トークン最適化など、回答品質を高めるための整形技術を詳しく解説します。
2025-02-19
カテゴリー
検索履歴
会話履歴 3400
大規模言語モデル 601
言語モデル 573
生成型要約 561
エンジニア向け 552
マルコフ連鎖 542
LLM 539
LLM 要約 531
データ前処理 525
注意メカニズム 519
自動要約 517
教育AI 515
バッチサイズ 509
GPT テキスト生成 508
パーソナライズドコンテンツ 508
バイアス 問題 505
NLP トランスフォーマー 503
数学的アプローチ 502
クロスエントロピー損失 500
ミニバッチ学習 497
トークン化 494
LLM テキスト生成 493
ロス計算 475
線形代数 470
コード生成 469
トレーニング 466
FAQシステム 465
LLM リアルタイム処理 465
GPT-2 テキスト生成 463
セルフアテンション 463
チーム
任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。
下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。