LLM入門


合計 79 件の記事があります。 現在 2 ページ中の 1 ページ目です。

W3CのAI Context仕様とは?|MCP入門 7.3|文脈の国際標準化とMCPの役割

AIの意思決定や会話文脈を明示的に設計するため、W3CではAI Context仕様の標準化が進んでいます。本記事ではその動向と、MCPとの親和性や将来のマッピング可能性について詳しく解説します。
2025-04-04

OpenAI GPT、Claude、Geminiの文脈処理とは?|MCP入門 7.1|各社LLMの設計思想とMCPの位置づけ

各社LLMは文脈や状態の扱い方に独自のアプローチを持っています。本記事ではOpenAI GPTのSystem MessageとMemory API、Claudeの自己内省型設計、Geminiのマルチモーダル連携を比較し、MCPが果たす中立的な役割を明らかにします。
2025-04-02

JSONスキーマによる状態制御の工夫とは?|MCP入門 6.4|一貫性あるAI応答を実現する構造的設計

生成AIの応答を安定化させるには、“状態”の明示が不可欠です。本記事では、MCP設計におけるJSONスキーマの活用方法を詳しく解説し、意図や画面状況をモデルに正しく伝える設計戦略を紹介します。
2025-03-31

モデルの“意図解釈”と状態伝達とは?|MCP入門 6.0|プロンプトに込められた意図を理解するLLM設計

LLMが正しく応答するためには、文脈だけでなく“何を求められているか”という意図を読み取る力が不可欠です。本章では、明示的な制約・システムメッセージ・構造化文脈などを通じて、モデルがどのように内部状態を形成するかを解説します。
2025-03-27

ツール活用 / マルチエージェントシステムでのMCP適用例とは?|MCP入門 5.4|複数エージェントとツールを統合する文脈設計

ツール活用やマルチエージェント設計では、AIが状態や目的を共有しながら協調する必要があります。MCPを活用することで、共通の文脈管理・状態同期・出力整理を実現し、複雑な連携を安定運用できる方法を解説します。
2025-03-26

ドキュメントベース質問応答(RAG)でのContext設計とは?|MCP入門 5.3|情報の構造化で精度と説明力を高める方法

RAG(検索補助生成)で生成AIが正確に応答するためには、検索結果をどのように文脈化するかが鍵です。MCP設計により、取得情報のスロット化・優先度付け・役割づけを行い、安定した回答と説明責任のある出力を実現する方法を解説します。
2025-03-25

チャットボットの履歴管理とは?|MCP入門 5.1|スコープ制御で精度とコストを最適化する設計

生成AIチャットボットの応答品質は、会話履歴の設計に大きく左右されます。本記事では、MCPを活用して履歴の粒度・要約・トピック切り替えを制御し、自然かつ効率的なチャット体験を作る方法を解説します。
2025-03-23

RAGとの統合設計とは?|MCP入門 4.1|生成AIの文脈構築を強化する検索補助付き設計

RAG(検索補助付き生成)は、生成AIに最新情報や社内知識を与える鍵です。本章では、MCPとの接続方法、FAQ注入、要約統合、テンプレートとの連携など、RAGとコンテキスト設計を統合する具体的手法を紹介します。
2025-03-18

テンプレートとスロットの設計とは?|MCP入門 3.3|生成AIの柔軟で安全な文脈構築法

生成AIの出力に一貫性と安全性を持たせるには、テンプレートとスロット設計が重要です。本章では、プロンプトテンプレート、文脈スロット化、入力サニタイズなど、再利用とセキュリティを両立する具体的なパターンを解説します。
2025-03-15

コンテキストマネジメントとは?|MCP入門 3.2|履歴と外部情報を活かす生成AI設計

生成AIの出力品質は、どんな文脈や履歴情報を参照しているかで決まります。本章では、チャット履歴要約・外部ベクター検索・ユーザープロファイル統合といったMCP設計の基礎を丁寧に解説します。
2025-03-14

システムインストラクションの設計パターンとは?|MCP入門 3.1|生成AIの人格と振る舞いの設計

生成AIの出力に一貫性と目的を持たせるには、システムインストラクションの設計が重要です。MCPにおける役割、トーン、ルール、タスク駆動型など、代表的な設計パターンをわかりやすく解説します。
2025-03-13

MCPによる状態制御と再現性の向上とは?|MCP入門 2.3|生成AIの安定設計の鍵

生成AIをプロダクトとして安定運用するには、出力の一貫性と再現性が不可欠です。MCP(Model Context Protocol)は文脈と状態を構造化し、モデルの振る舞いを制御・再現可能にします。設計原則から具体例まで詳しく解説。
2025-03-10

MCPとは?生成AIの文脈と状態を設計する仕組み|MCP入門 2.1

MCP(Model Context Protocol)は、生成AIが一貫した出力を生むための文脈と状態を設計・再現するためのプロトコルです。本節ではMCPの定義、プロンプトとの違い、設計思想としての役割を丁寧に解説します。
2025-03-08

RAGは本当に不要になるのか?長文対応LLM時代の検索戦略を再考する|LLM入門 7.3

GPT-4 128kやClaude 2の登場により、「検索せず全文渡す」構成が可能になってきました。本記事ではRetrieval不要論の背景と現実的な限界、そしてRAGの再定義について丁寧に解説します。
2025-03-06

モデルにとっての記憶とは何か?|MCP入門 1.4|生成AIと文脈再現の技術

生成AIは本当に記憶しているのか?実は、AIの“記憶”は文脈の再構築にすぎません。エフェメラルメモリ・永続メモリ・役割設計など、MCP(Model Context Protocol)での記憶制御の仕組みをわかりやすく解説します。
2025-03-06

RAGを強化するハイブリッド検索とMulti-Vector戦略とは?検索の多視点化と精度向上の設計|LLM入門 7.2

意味検索とキーワード検索を組み合わせるハイブリッド検索、複数の視点から検索するMulti-Vector RAG。どちらもRetrieverの精度と柔軟性を高める先進的な手法です。本記事では構成・効果・導入の注意点を解説します。
2025-03-05

RAGにおける幻覚とは?情報の過不足を防ぎ生成精度を高める設計法|LLM入門 7.1

RAG構成でも、LLMによる幻覚(hallucination)は発生します。本記事では、Retriever精度、プロンプト設計、出典明示などにより幻覚を抑える具体的な方法と、検知・評価の技術までを丁寧に解説します。
2025-03-04

プロンプトとコンテクストの違いとは?|MCP入門 1.2|生成AIにおける役割と設計の考え方

生成AIを効果的に活用するには、Prompt(命令)とContext(文脈)を分けて設計する必要があります。MCP(Model Context Protocol)の基礎として、この2つの違いと役割、実装への考え方を詳しく解説します。
2025-03-04

モデルはなぜ文脈を必要とするのか?|MCP入門 1.1|生成AIとコンテキスト理解

ChatGPTをはじめとする生成AIは、入力だけでなく“文脈”によって出力を変えています。なぜ文脈が必要なのか、モデルはどう背景を読み取るのか。MCP設計の基礎となる文脈理解について、具体例を交えて丁寧に解説します。
2025-03-03

RAGにおけるプロンプト合成の設計パターンとは?文脈統合で生成精度を高める方法|LLM入門 6.3

Retrieverで得た情報をLLMにどう渡すかが、RAGの成否を分けます。本記事では、文書構造ごとのプロンプト合成パターンとその効果、生成品質を高めるための設計指針を具体的に解説します。
2025-03-01

RAGの検索精度を高める設計術:質問の正規化とドキュメントマッチングとは|LLM入門 6.2

自然文のままでは曖昧なユーザー質問を、検索に適した形式へ整える「質問の正規化」と、意味的に関連する文書を適切に選び出す「マッチング戦略」について、RAG実装の視点からわかりやすく解説します。
2025-02-28

RAGとMCPの関係とは?RetrieverとLLMの役割分担を明確にする設計法|LLM入門 6.1

RAG構成を安定的に運用するには、RetrieverとLLMの責任範囲を明確にする必要があります。本記事では、MCP(Model Context Protocol)を活用して、指示・文脈・入力の3層に分けた設計の考え方を解説します。
2025-02-27

RAGの設計力とは?プロンプトと文脈の最適化で生成精度を高める方法|LLM入門 第6章

高性能なLLMと正確な検索結果を活かす鍵は、プロンプトと文脈の設計にあります。本章では、RAGの実運用で成果を出すための構成・整形・トークン最適化の具体的な手法を、設計者の視点から詳しく解説します。
2025-02-26

Azure Cognitive SearchやElasticでRAGを実現する方法|既存検索基盤を活かす構成とは|LLM入門 5.4

RAGはLangChainやLlamaIndex以外にも、Azure Cognitive SearchやElasticsearchといった既存インフラでも構築可能です。本記事では、それぞれの特徴や適用例、選定ポイントをわかりやすく整理します。
2025-02-25

セマンティック検索とキーワード検索の違いとは?RAGの精度を左右する検索技術|LLM入門 4.4

RAGでは従来のキーワード検索ではなく、意味ベースのセマンティック検索が活用されます。本記事では、両者の違いと特性、ハイブリッド検索の活用法までを比較しながら、実務での使い分け方を丁寧に解説します。
2025-02-20

RAGの回答精度を左右するコンテキスト整形とは?LLMへの最適な情報の渡し方|LLM入門 4.3

RAGにおいてRetrieverが抽出した情報をどのように整形し、LLMに渡すかは、出力の質に直結します。本記事では、プロンプト設計・チャンク構造・トークン最適化など、回答品質を高めるための整形技術を詳しく解説します。
2025-02-19

RAGに適したベクトル検索エンジンとは?FAISS・Weaviate・Pinecone徹底比較|LLM入門 4.2

RAGの検索性能を支えるのがベクトル検索エンジンです。本記事では、FAISS・Weaviate・Pineconeといった代表的エンジンの特徴を比較し、導入時に重視すべき観点や選定ポイントをわかりやすく解説します。
2025-02-18

RAGで専門文書を活用する方法|法務・医療・教育分野での事例と効果|LLM入門 3.3

法律文書、医療ガイドライン、教育要綱など、専門性の高い情報を誰もが使いやすくするにはどうすればよいか。本記事では、RAGを活用して専門文書を自然言語で引き出す仕組みと、実際の活用事例を丁寧に解説します。
2025-02-14

RAGでFAQ対応を自動化する方法と効果とは?顧客サポートをAIで強化|LLM入門 3.2

RAGを活用したFAQ対応Botは、顧客の自然な質問に対して意味ベースで文書を検索し、正確でわかりやすい回答を生成します。本記事では、EC事業者の導入事例とともに、設計・運用のポイントや導入効果を具体的に解説します。
2025-02-13

RAGで社内ナレッジBotを構築する方法と導入効果|LLM入門 3.1

就業規則や業務手順が整備されていても、社員が情報を引き出せない現実があります。本記事では、RAGを活用して社内文書に基づくナレッジBotを構築し、社内問い合わせ削減と業務効率向上を実現した事例を紹介します。
2025-02-12

RAGは何に向いている?生成AIの得意・不得意を整理|LLM入門 2.4

RAGは社内ナレッジ検索やFAQ応答に優れた効果を発揮しますが、数値計算やリアルタイム情報の処理には課題もあります。本記事では、RAGが得意なユースケースと不得意な場面を丁寧に解説し、導入判断の視点を提供します。
2025-02-10

RAGの中核構造:RetrieverとGeneratorの役割と分離設計|LLM入門 2.2

RAGにおいて、Retriever(検索部)とGenerator(生成部)の明確な分離は高精度な応答生成の鍵となります。本記事では、それぞれの役割、構造、設計上のメリットについて詳しく解説し、柔軟で拡張性のあるAI構築のための基盤を紹介します。
2025-02-08

RAGとは?検索と生成を組み合わせた新しいAIの仕組み|LLM入門 2.1

RAG(Retrieval-Augmented Generation)は、外部知識を検索してLLMの応答に活かす次世代アーキテクチャです。本記事では、RAGの基本フローや構成要素、従来の生成AIとの違いを図解的にわかりやすく解説します。
2025-02-07

RAGとは何か?検索と生成をつなぐ新しいAIアーキテクチャの全体像|LLM入門 第2章

RAG(Retrieval-Augmented Generation)は、検索と生成を組み合わせた新しい生成AIの構造です。本章では、RAGの基本構造、RetrieverとGeneratorの役割、従来の検索との違い、得意・不得意なケースまで、全体像を体系的に解説します。
2025-02-06

RAGとは何か?「知識の外部化」という新しいAI設計思想|LLM入門 1.3

従来のAIは知識をモデルに内在化させる方式が主流でした。しかし、変化の激しい業務環境では「知識の外部化」が重要になります。本記事では、RAGによって実現される知識とモデルの分離という設計思想の本質を解説します。
2025-02-05

なぜRAGが必要とされるのか?|業務利用で見える生成AIの限界とは|LLM入門 1.2

ChatGPTを業務に導入しようとすると、正確性・柔軟性・更新性に課題が見えてきます。本記事では、企業利用における生成AIの限界と、RAG(Retrieval-Augmented Generation)という新たなアプローチの登場背景を解説します。
2025-02-04

ChatGPTだけでは業務に使えない理由とは?|生成AIの限界とRAGの必要性|LLM入門 1.1

ChatGPTは汎用的な質問に対しては強力なツールですが、業務利用では限界があります。本記事では、固有知識の欠如、幻覚(hallucination)、情報の鮮度といった構造的課題を解説し、RAGという新たなアプローチの必要性を明らかにします。
2025-02-03

なぜ今RAGが必要なのか?|ChatGPTの限界と知識の外部化|LLM入門 第1章

ChatGPTだけでは業務に使えない──その理由は、固有情報の欠如や幻覚、情報の鮮度にあります。本章では、こうした生成AIの限界と、RAG(Retrieval-Augmented Generation)が求められる背景を丁寧に解説します。
2025-02-02

RAGで業務AIを強化する方法とは?|LLM入門:検索と統合の仕組みを解説

RAG(Retrieval-Augmented Generation)は、大規模言語モデルに社内ナレッジやFAQを統合し、業務に使えるAIを構築する鍵です。本記事ではRAGの仕組み、活用例、導入のステップまで、わかりやすく解説します。
2025-02-01

7.3 マルチモーダルモデルとLLMの統合 | テキスト、画像、音声、映像の融合技術

マルチモーダルモデルとLLMの統合により、テキスト、画像、音声、映像を同時に処理することで、より深い理解と高精度な応答が可能になります。具体的な技術と応用例を紹介します。
2024-11-26

7.0 LLMの未来の展望と課題 | 自然言語処理の進化と技術的チャレンジ

LLM(大規模言語モデル)の進化と今後の可能性について解説。技術的課題や新しいアプリケーションの展望、エンジニアに必要なスキルを紹介します。
2024-11-24

6.0 LLMアプリケーションのデプロイとCI/CDパイプラインの構築

LLMアプリケーションをDockerとKubernetesでデプロイし、GitHub Actionsを使用したCI/CDパイプラインの構築方法を解説します。スケーラブルな運用環境の実現に役立つ情報です。
2024-11-20

5.3 NLUとNLGの活用|高度なチャットボットの設計と実装

NLU(自然言語理解)とNLG(自然言語生成)の技術を使用して、よりインテリジェントなチャットボットを構築する方法をPythonの実装例とともに解説。
2024-11-19

3.2 LLMのデータクレンジング自動化|Pythonでの効率的なノイズ除去と前処理

LLMのトレーニングにおけるデータクレンジングの重要性とその自動化手法を解説。Pythonコード例で、HTMLタグの除去、ストップワードの削除、正規化などの基本的なクレンジングプロセスを紹介します。
2024-11-11

3.0 LLMのトークン化とデータ前処理の自動化|効率的なデータクレンジングと前処理パイプライン

LLMのトレーニングに必要なトークン化とデータ前処理の自動化について解説。Pythonコード例とHugging Faceライブラリを使用し、データクレンジングと効率的な前処理パイプラインの構築方法を紹介します。
2024-11-09

2.3 LLMのトレーニング実行とモデル評価|Pythonによるトレーニングと評価手法

LLMのトレーニングと評価の手順をPythonコード例と共に紹介。Hugging Face Transformersを使用したBERTモデルのトレーニング、評価指標の解説、モデルの保存方法を説明します。
2024-11-08

9.1 LLMを理解するための次のステップ - 実践的な学習方法とプロジェクト参加のすすめ

LLM(大規模言語モデル)の基礎を学んだエンジニアが、さらなる学びを進めるための次のステップを紹介します。研究論文の精読、実践的プロジェクトの参加、モデルのカスタマイズや最適化手法について詳しく解説します。
2024-10-26

9.0 LLMとエンジニアが向き合うべきポイント - モデル最適化、バイアス対応、倫理的責任

LLM(大規模言語モデル)を扱うエンジニアが向き合うべき重要なポイントを解説します。モデルの最適化やバイアス軽減、データプライバシーの保護、倫理的責任など、LLM開発における重要な側面について考察します。
2024-10-25

8.2 LLMにおけるバイアスと倫理的課題 - 公平で信頼性の高いAIの実現に向けた取り組み

LLM(大規模言語モデル)が抱えるバイアスと倫理的課題について解説し、データバイアス軽減の技術や説明可能なAI(XAI)の役割を紹介します。より公平で信頼性の高いAIシステムを構築するための今後の展望も説明します。
2024-10-24

7.2 質問応答システムと機械翻訳 - LLMによる自然言語処理の応用技術

LLM(大規模言語モデル)を活用した質問応答システムと機械翻訳の技術について詳しく解説します。カスタマーサポートの自動化、国際ビジネス、観光業界などでの具体的な応用例を紹介します。
2024-10-21