LLM入門
合計 2 件の記事があります。
現在 1 ページ中の 1 ページ目です。
6.1 データセットの前処理 - トレーニングデータのクリーニングと最適化方法
LLM(大規模言語モデル)のトレーニングに使用されるデータセットの前処理手法を解説します。データのクリーニング、トークン化、バイアス軽減、サンプリングなど、効果的な学習のためのプロセスを紹介します。
2024-10-17
1.2 確率論の基本と対話生成|LLMの次単語予測を学ぶ
LMは対話を“一単語ずつの確率予測”で生成します。本記事では「P(次の単語|文脈)」の考え方、自己回帰的生成、Top-kサンプリングやTemperature制御まで、確率論の基礎を対話例とともにわかりやすく解説します。
2024-10-04
カテゴリー
検索履歴
会話履歴 4201
LLM 737
大規模言語モデル 732
言語モデル 697
生成型要約 677
GPT-2 テキスト生成 652
注意メカニズム 649
GPT テキスト生成 638
NLP トランスフォーマー 633
エンジニア向け 622
クロスエントロピー損失 621
マルコフ連鎖 616
LLM テキスト生成 612
教育AI 611
LLM 要約 598
データ前処理 596
バイアス 問題 596
バッチサイズ 596
パーソナライズドコンテンツ 594
トレーニング 586
トークン化 579
自動要約 577
数学的アプローチ 572
セルフアテンション 552
ミニバッチ学習 551
ロス計算 545
コード生成 544
LLM リアルタイム処理 543
FAQシステム 540
線形代数 532
チーム
任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。
下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。