大規模言語モデルと対話型AIの「思考状態」を設計するプロトコルの基礎と応用
はじめに
ChatGPTをはじめとする生成AIは、単に言葉を受け取って応答するだけでなく、 背景や状況、過去のやりとりといった「文脈(コンテキスト)」を理解してこそ、本領を発揮します。 その「文脈」をどのようにAIに与え、維持し、切り替え、再利用するか。 本連載では、そうしたAIの“思考状態”を設計する技術、 Model Context Protocol(MCP)について、基礎から応用までわかりやすく解説していきます。
目次
公開日: 2025-03-01
最終更新日: 2025-05-12
バージョン: 6
下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。カテゴリー
検索履歴
会話履歴 3405
大規模言語モデル 601
言語モデル 574
生成型要約 561
エンジニア向け 553
マルコフ連鎖 543
LLM 539
LLM 要約 532
データ前処理 525
注意メカニズム 519
自動要約 518
教育AI 516
バッチサイズ 511
GPT テキスト生成 509
パーソナライズドコンテンツ 509
バイアス 問題 506
NLP トランスフォーマー 504
数学的アプローチ 503
クロスエントロピー損失 500
ミニバッチ学習 499
トークン化 495
LLM テキスト生成 493
ロス計算 475
コード生成 471
線形代数 470
トレーニング 469
LLM リアルタイム処理 467
FAQシステム 466
GPT-2 テキスト生成 465
セルフアテンション 463
チーム
任 弘毅
株式会社レシートローラーにて開発とサポートを担当。POSレジやShopifyアプリ開発の経験を活かし、業務のデジタル化を促進。
下田 昌平
開発と設計を担当。1994年からプログラミングを始め、今もなお最新技術への探究心を持ち続けています。