Introduction to LLM
Total of 10 articles available.
Currently on page 1 of 1.
2.1 What Is a Large Language Model?
A clear and in-depth explanation of what Large Language Models (LLMs) are. Learn how LLMs map token sequences to probability distributions, why next-token prediction unlocks general intelligence, and what makes a model “large.” This section builds the foundation for understanding pretraining, parameters, and scaling laws.
2025-09-08
Chapter 2 — LLMs in Context: Concepts and Background
An accessible introduction to Chapter 2 of Understanding LLMs Through Math. Explore what Large Language Models are, why pretraining and parameters matter, how scaling laws shape model performance, and why Transformers revolutionized NLP. This chapter provides essential context before diving deeper into the mechanics of modern LLMs.
2025-09-07
1.3 Entropy and Information: Quantifying Uncertainty
A clear, intuitive exploration of entropy, information, and uncertainty in Large Language Models. Learn how information theory shapes next-token prediction, why entropy matters for creativity and coherence, and how cross-entropy connects probability to learning. This section concludes Chapter 1 and prepares readers for the conceptual foundations in Chapter 2.
2025-09-06
1.2 Basics of Probability for Language Generation
An intuitive, beginner-friendly guide to probability in Large Language Models. Learn how LLMs represent uncertainty, compute conditional probabilities, apply the chain rule, and generate text through sampling. This chapter builds the mathematical foundation for entropy and information theory in Section 1.3.
2025-09-05
1.1 Getting Comfortable with Mathematical Notation
A clear and accessible guide to understanding the mathematical notation used in Large Language Models. Learn how tokens, sequences, functions, and conditional probability expressions form the foundation of LLM reasoning. This chapter prepares readers for probability, entropy, and information theory in later sections.
2025-09-04
Chapter 1 — Mathematical Intuition for Language Models
An accessible introduction to Chapter 1 of Understanding LLMs Through Math. Learn how mathematical notation, probability, entropy, and information theory form the core intuition behind modern Large Language Models. This chapter builds the foundation for understanding how LLMs generate text and quantify uncertainty.
2025-09-03
Part I — Mathematical Foundations for Understanding LLMs
A clear and intuitive introduction to the mathematical foundations behind Large Language Models (LLMs). This section explains probability, entropy, embeddings, and the essential concepts that allow modern AI systems to think, reason, and generate language. Learn why mathematics is the timeless core of all LLMs and prepare for Chapter 1: Mathematical Intuition for Language Models.
2025-09-02
Understanding LLMs – A Mathematical Approach to the Engine Behind AI
A preview from Chapter 7.4: Discover why large language models inherit bias, the real-world risks, strategies for mitigation, and the growing role of AI governance.
2025-09-01
6.0 Hands-On with LLMs
A preview from Chapter 6: Learn how to run large language models yourself with open-source libraries, cloud APIs, and Python—making LLMs accessible to everyone.
2024-10-02
4.3 LLMs in Translation and Summarization: Enhancing Multilingual Communication
Learn how Large Language Models (LLMs) leverage Transformer architectures for accurate translation and summarization, improving efficiency in business, media, and education.
2024-09-18
Category
Tags
Search History
Aufgabenverwaltung 1481
AI-powered solutions 1419
2FA 1411
interface do usuário 1405
language support 1391
améliorations 1378
colaboración 1375
ActionBridge 1374
Version 1.1.0 1351
atualizações 1344
búsqueda de tareas 1340
Aufgaben suchen 1338
interfaz de usuario 1329
modèles de tâches 1325
joindre des fichiers 1318
Produktivität 1315
new features 1307
Transformer 1306
anexar arquivos 1305
Aufgabenmanagement 1296
Teamaufgaben 1268
Two-Factor Authentication 1268
interface utilisateur 1268
busca de tarefas 1261
customer data 1252
CS data analysis 1242
modelos de tarefas 1239
feedback automation 1238
Google Maps review integration 1233
mentions feature 1155
Authors
SHO
CTO of Receipt Roller Inc., he builds innovative AI solutions and writes to make large language models more understandable, sharing both practical uses and behind-the-scenes insights.