Introduction to LLM
Total of 11 articles available.
Currently on page 1 of 1.
Understanding LLMs – A Mathematical Approach to the Engine Behind AI
A preview from Chapter 7.4: Discover why large language models inherit bias, the real-world risks, strategies for mitigation, and the growing role of AI governance.
2025-09-01
7.4 Data Ethics and Bias in Large Language Models
A preview from Chapter 7.4: Discover why large language models inherit bias, the real-world risks, strategies for mitigation, and the growing role of AI governance.
2024-10-09
7.3 Integrating Multimodal Models
A preview from Chapter 7.3: Discover how multimodal models fuse text, images, audio, and video to unlock richer AI capabilities beyond text-only LLMs.
2024-10-09
7.2 Resource-Efficient Training
A preview from Chapter 7.2: Learn how techniques like distillation, quantization, distributed training, and data efficiency make LLMs faster, cheaper, and greener.
2024-10-08
7.1 The Evolution of Large-Scale Models
A preview from Chapter 7.1: Explore how LLMs have scaled from billions to trillions of parameters, the gains in performance, and the rising technical and ethical challenges.
2024-10-07
6.1 Introducing Open-Source Tools and APIs
A preview from Chapter 6.1: Explore Hugging Face, OpenAI, Google Cloud Vertex AI, and Azure Cognitive Services—leading tools to bring LLMs into your projects.
2024-10-04
5.3 Real-Time Deployment Challenges
A preview from Chapter 5.3: Explore latency, scalability, and optimization techniques for deploying large language models in real-time applications.
2024-10-01
5.2 Compute Resources and Cost
A preview from Chapter 5.2: Learn why LLMs demand massive compute power, what drives cost, and practical strategies to optimize performance and sustainability.
2024-09-30
5.0 Pitfalls & Best Practices When Using LLMs
Discover the hidden risks of large language models—bias, cost, and latency—and learn best practices for deploying LLMs responsibly.
2024-09-28
4.4 How LLMs Write Code: The Rise of AI-Powered Programming Assistants
Explore how large language models (LLMs) generate and complete code from natural-language prompts, and what it means for the future of software development.
2024-09-27
A Guide to LLMs (Large Language Models): Understanding the Foundations of Generative AI
Learn about large language models (LLMs), including GPT, BERT, and T5, their functionality, training processes, and practical applications in NLP. This guide provides insights for engineers interested in leveraging LLMs in various fields.
2024-09-01
Category
Tags
Search History
Aufgabenverwaltung 1266
interface do usuário 1226
AI-powered solutions 1197
améliorations 1193
2FA 1185
colaboración 1185
language support 1169
atualizações 1162
búsqueda de tareas 1160
modèles de tâches 1158
ActionBridge 1144
Produktivität 1139
Aufgaben suchen 1133
interfaz de usuario 1128
Version 1.1.0 1114
joindre des fichiers 1112
anexar arquivos 1095
new features 1090
Transformer 1087
Aufgabenmanagement 1080
busca de tarefas 1074
interface utilisateur 1068
Teamaufgaben 1064
feedback automation 1058
Two-Factor Authentication 1044
modelos de tarefas 1042
CS data analysis 1021
customer data 1020
Google Maps review integration 1016
mentions feature 977
Authors
SHO
CTO of Receipt Roller Inc., he builds innovative AI solutions and writes to make large language models more understandable, sharing both practical uses and behind-the-scenes insights.