Introduction to LLM
Total of 3 articles available.
Currently on page 1 of 1.
Chapter 1 — Mathematical Intuition for Language Models
An accessible introduction to Chapter 1 of Understanding LLMs Through Math. Learn how mathematical notation, probability, entropy, and information theory form the core intuition behind modern Large Language Models. This chapter builds the foundation for understanding how LLMs generate text and quantify uncertainty.
2025-09-03
Part I — Mathematical Foundations for Understanding LLMs
A clear and intuitive introduction to the mathematical foundations behind Large Language Models (LLMs). This section explains probability, entropy, embeddings, and the essential concepts that allow modern AI systems to think, reason, and generate language. Learn why mathematics is the timeless core of all LLMs and prepare for Chapter 1: Mathematical Intuition for Language Models.
2025-09-02
Understanding LLMs – A Mathematical Approach to the Engine Behind AI
A preview from Chapter 7.4: Discover why large language models inherit bias, the real-world risks, strategies for mitigation, and the growing role of AI governance.
2025-09-01
Category
Tags
Search History
Aufgabenverwaltung 1483
AI-powered solutions 1419
2FA 1412
interface do usuário 1405
language support 1393
améliorations 1379
ActionBridge 1376
colaboración 1376
Version 1.1.0 1353
atualizações 1345
Aufgaben suchen 1341
búsqueda de tareas 1341
interfaz de usuario 1329
modèles de tâches 1326
joindre des fichiers 1320
Produktivität 1317
new features 1308
Transformer 1306
anexar arquivos 1306
Aufgabenmanagement 1296
Teamaufgaben 1269
Two-Factor Authentication 1269
interface utilisateur 1268
busca de tarefas 1262
customer data 1252
CS data analysis 1244
feedback automation 1241
modelos de tarefas 1239
Google Maps review integration 1233
mentions feature 1156
Authors
SHO
CTO of Receipt Roller Inc., he builds innovative AI solutions and writes to make large language models more understandable, sharing both practical uses and behind-the-scenes insights.