Introduction to LLM
Total of 3 articles available.
Currently on page 1 of 1.
Chapter 1 — Mathematical Intuition for Language Models
An accessible introduction to Chapter 1 of Understanding LLMs Through Math. Learn how mathematical notation, probability, entropy, and information theory form the core intuition behind modern Large Language Models. This chapter builds the foundation for understanding how LLMs generate text and quantify uncertainty.
2025-09-03
Part I — Mathematical Foundations for Understanding LLMs
A clear and intuitive introduction to the mathematical foundations behind Large Language Models (LLMs). This section explains probability, entropy, embeddings, and the essential concepts that allow modern AI systems to think, reason, and generate language. Learn why mathematics is the timeless core of all LLMs and prepare for Chapter 1: Mathematical Intuition for Language Models.
2025-09-02
Understanding LLMs – A Mathematical Approach to the Engine Behind AI
A preview from Chapter 7.4: Discover why large language models inherit bias, the real-world risks, strategies for mitigation, and the growing role of AI governance.
2025-09-01
Category
Tags
Search History
Aufgabenverwaltung 1253
interface do usuário 1213
AI-powered solutions 1185
améliorations 1185
colaboración 1175
2FA 1174
language support 1157
atualizações 1154
búsqueda de tareas 1154
modèles de tâches 1150
ActionBridge 1133
Produktivität 1128
Aufgaben suchen 1121
interfaz de usuario 1119
joindre des fichiers 1103
Version 1.1.0 1101
anexar arquivos 1082
Transformer 1079
new features 1079
Aufgabenmanagement 1072
busca de tarefas 1066
interface utilisateur 1053
Teamaufgaben 1052
feedback automation 1047
Two-Factor Authentication 1034
modelos de tarefas 1033
CS data analysis 1014
customer data 1011
Google Maps review integration 1004
mentions feature 968
Authors
SHO
CTO of Receipt Roller Inc., he builds innovative AI solutions and writes to make large language models more understandable, sharing both practical uses and behind-the-scenes insights.