Introduction to LLM
Total of 4 articles available.
Currently on page 1 of 1.
Chapter 2 — LLMs in Context: Concepts and Background
An accessible introduction to Chapter 2 of Understanding LLMs Through Math. Explore what Large Language Models are, why pretraining and parameters matter, how scaling laws shape model performance, and why Transformers revolutionized NLP. This chapter provides essential context before diving deeper into the mechanics of modern LLMs.
2025-09-07
Part I — Mathematical Foundations for Understanding LLMs
A clear and intuitive introduction to the mathematical foundations behind Large Language Models (LLMs). This section explains probability, entropy, embeddings, and the essential concepts that allow modern AI systems to think, reason, and generate language. Learn why mathematics is the timeless core of all LLMs and prepare for Chapter 1: Mathematical Intuition for Language Models.
2025-09-02
7.3 Integrating Multimodal Models
A preview from Chapter 7.3: Discover how multimodal models fuse text, images, audio, and video to unlock richer AI capabilities beyond text-only LLMs.
2024-10-09
7.1 The Evolution of Large-Scale Models
A preview from Chapter 7.1: Explore how LLMs have scaled from billions to trillions of parameters, the gains in performance, and the rising technical and ethical challenges.
2024-10-07
Category
Tags
Search History
Aufgabenverwaltung 1266
interface do usuário 1226
AI-powered solutions 1197
améliorations 1193
2FA 1185
colaboración 1185
language support 1169
atualizações 1162
búsqueda de tareas 1160
modèles de tâches 1158
ActionBridge 1144
Produktivität 1139
Aufgaben suchen 1133
interfaz de usuario 1129
Version 1.1.0 1114
joindre des fichiers 1112
anexar arquivos 1095
new features 1091
Transformer 1087
Aufgabenmanagement 1080
busca de tarefas 1074
interface utilisateur 1068
Teamaufgaben 1064
feedback automation 1058
Two-Factor Authentication 1044
modelos de tarefas 1042
CS data analysis 1021
customer data 1020
Google Maps review integration 1016
mentions feature 977
Authors
SHO
CTO of Receipt Roller Inc., he builds innovative AI solutions and writes to make large language models more understandable, sharing both practical uses and behind-the-scenes insights.